< Algebra < Field < Direct
Algebra/Field/Direct/Definition
Field
A set is called a field if there are two binary operations (called addition and multiplication)
and two different elements that fulfill the following properties.
- Axioms for the addition:
- Associative law: holds for all .
- Commutative law: holds for all .
- is the neutral element of the addition, i.e., holds for all .
- Existence of the negative: For every , there exists an element with .
- Axioms of the multiplication:
- Associative law: holds for all .
- Commutative law: holds for all .
- is the neutral element for the multiplication, i.e., holds for all .
- Existence of the inverse: For every with , there exists an element such that .
- Distributive law: holds for all .
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.