Tesseract and 16-cell faces
This list shows the k-faces of the tesseract and its dual 16-cell.
tesseract projection | |
---|---|
![]() Tesseract k-faces with labels from −40 to 40 |
![]() Tesseract vertices with labels from 0 to 15 |
The convex hull of this projection is the Bilinski dodecahedron. A map from k-faces (−40 to 40) to lists of tesseract vertices (0 to 15) can be found here. |
16-cell projection | |||
---|---|---|---|
![]() 8 vertices |
![]() 24 edges (forming 6 rings) |
![]() 32 triangular faces (forming 4 spheres) |
![]() graph corresponding to 15 of 16 cells |
ternary weight | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
number of faces | 0 | 8 | 24 | 32 | 16 |
tesseract faces | t 4 tesseract |
t 3 cube |
t 2 square |
t 1 edge |
t 0 vertex |
16-cell faces | c 4 16-cell |
c 0 vertex |
c 1 edge |
c 2 triangle |
c 3 tetrahedron |
The sign vectors (with entries 1, 0, −1) in the following table are the face centers of the tesseract. (Compare example for the cube.)
The indices on the left (between −40 and 40) are their interpretation as little-endian balanced ternary numbers.
The columns to their right are their sums, patterns of non-zero entries, and Hamming weights (numbers of non-zero entries).
The default order of the table is first by Hamming weights, then by patterns, and then by sums.
index | b. t. vector |
s | p | w | tesseract face type |
tesseract vertices |
tesseract image |
16-cell face type |
16-cell image |
---|---|---|---|---|---|---|---|---|---|
0 | ![]() | 0 | 0 .... | 0 | t 4 tesseract | !!!! !!!! !!!! !!!! | ![]() | c 4 16-cell | |
−1 | ![]() | −1 | 1 !... | 1 | t 3 cube | !.!. !.!. !.!. !.!. | ![]() | c 0 vertex | ![]() |
1 | ![]() | 1 | 1 !... | 1 | t 3 cube | .!.! .!.! .!.! .!.! | ![]() | c 0 vertex | ![]() |
−3 | ![]() | −1 | 2 .!.. | 1 | t 3 cube | !!.. !!.. !!.. !!.. | ![]() | c 0 vertex | ![]() |
3 | ![]() | 1 | 2 .!.. | 1 | t 3 cube | ..!! ..!! ..!! ..!! | ![]() | c 0 vertex | ![]() |
−9 | ![]() | −1 | 4 ..!. | 1 | t 3 cube | !!!! .... !!!! .... | ![]() | c 0 vertex | ![]() |
9 | ![]() | 1 | 4 ..!. | 1 | t 3 cube | .... !!!! .... !!!! | ![]() | c 0 vertex | ![]() |
−27 | ![]() | −1 | 8 ...! | 1 | t 3 cube | !!!! !!!! .... .... | ![]() | c 0 vertex | ![]() |
27 | ![]() | 1 | 8 ...! | 1 | t 3 cube | .... .... !!!! !!!! | ![]() | c 0 vertex | ![]() |
−4 | ![]() | −2 | 3 !!.. | 2 | t 2 square | !... !... !... !... | ![]() | c 1 edge | ![]() |
−2 | ![]() | 0 | 3 !!.. | 2 | t 2 square | .!.. .!.. .!.. .!.. | ![]() | c 1 edge | ![]() |
2 | ![]() | 0 | 3 !!.. | 2 | t 2 square | ..!. ..!. ..!. ..!. | ![]() | c 1 edge | ![]() |
4 | ![]() | 2 | 3 !!.. | 2 | t 2 square | ...! ...! ...! ...! | ![]() | c 1 edge | ![]() |
−10 | ![]() | −2 | 5 !.!. | 2 | t 2 square | !.!. .... !.!. .... | ![]() | c 1 edge | ![]() |
−8 | ![]() | 0 | 5 !.!. | 2 | t 2 square | .!.! .... .!.! .... | ![]() | c 1 edge | ![]() |
8 | ![]() | 0 | 5 !.!. | 2 | t 2 square | .... !.!. .... !.!. | ![]() | c 1 edge | ![]() |
10 | ![]() | 2 | 5 !.!. | 2 | t 2 square | .... .!.! .... .!.! | ![]() | c 1 edge | ![]() |
−12 | ![]() | −2 | 6 .!!. | 2 | t 2 square | !!.. .... !!.. .... | ![]() | c 1 edge | ![]() |
−6 | ![]() | 0 | 6 .!!. | 2 | t 2 square | ..!! .... ..!! .... | ![]() | c 1 edge | ![]() |
6 | ![]() | 0 | 6 .!!. | 2 | t 2 square | .... !!.. .... !!.. | ![]() | c 1 edge | ![]() |
12 | ![]() | 2 | 6 .!!. | 2 | t 2 square | .... ..!! .... ..!! | ![]() | c 1 edge | ![]() |
−28 | ![]() | −2 | 9 !..! | 2 | t 2 square | !.!. !.!. .... .... | ![]() | c 1 edge | ![]() |
−26 | ![]() | 0 | 9 !..! | 2 | t 2 square | .!.! .!.! .... .... | ![]() | c 1 edge | ![]() |
26 | ![]() | 0 | 9 !..! | 2 | t 2 square | .... .... !.!. !.!. | ![]() | c 1 edge | ![]() |
28 | ![]() | 2 | 9 !..! | 2 | t 2 square | .... .... .!.! .!.! | ![]() | c 1 edge | ![]() |
−30 | ![]() | −2 | 10 .!.! | 2 | t 2 square | !!.. !!.. .... .... | ![]() | c 1 edge | ![]() |
−24 | ![]() | 0 | 10 .!.! | 2 | t 2 square | ..!! ..!! .... .... | ![]() | c 1 edge | ![]() |
24 | ![]() | 0 | 10 .!.! | 2 | t 2 square | .... .... !!.. !!.. | ![]() | c 1 edge | ![]() |
30 | ![]() | 2 | 10 .!.! | 2 | t 2 square | .... .... ..!! ..!! | ![]() | c 1 edge | ![]() |
−36 | ![]() | −2 | 12 ..!! | 2 | t 2 square | !!!! .... .... .... | ![]() | c 1 edge | ![]() |
−18 | ![]() | 0 | 12 ..!! | 2 | t 2 square | .... !!!! .... .... | ![]() | c 1 edge | ![]() |
18 | ![]() | 0 | 12 ..!! | 2 | t 2 square | .... .... !!!! .... | ![]() | c 1 edge | ![]() |
36 | ![]() | 2 | 12 ..!! | 2 | t 2 square | .... .... .... !!!! | ![]() | c 1 edge | ![]() |
−13 | ![]() | −3 | 7 !!!. | 3 | t 1 edge | 0, 8 | ![]() | c 2 triangle | ![]() |
−11 | ![]() | −1 | 7 !!!. | 3 | t 1 edge | 1, 9 | ![]() | c 2 triangle | ![]() |
−7 | ![]() | −1 | 7 !!!. | 3 | t 1 edge | 2, 10 | ![]() | c 2 triangle | ![]() |
5 | ![]() | −1 | 7 !!!. | 3 | t 1 edge | 4, 12 | ![]() | c 2 triangle | ![]() |
−5 | ![]() | 1 | 7 !!!. | 3 | t 1 edge | 3, 11 | ![]() | c 2 triangle | ![]() |
7 | ![]() | 1 | 7 !!!. | 3 | t 1 edge | 5, 13 | ![]() | c 2 triangle | ![]() |
11 | ![]() | 1 | 7 !!!. | 3 | t 1 edge | 6, 14 | ![]() | c 2 triangle | ![]() |
13 | ![]() | 3 | 7 !!!. | 3 | t 1 edge | 7, 15 | ![]() | c 2 triangle | ![]() |
−31 | ![]() | −3 | 11 !!.! | 3 | t 1 edge | 0, 4 | ![]() | c 2 triangle | ![]() |
−29 | ![]() | −1 | 11 !!.! | 3 | t 1 edge | 1, 5 | ![]() | c 2 triangle | ![]() |
−25 | ![]() | −1 | 11 !!.! | 3 | t 1 edge | 2, 6 | ![]() | c 2 triangle | ![]() |
23 | ![]() | −1 | 11 !!.! | 3 | t 1 edge | 8, 12 | ![]() | c 2 triangle | ![]() |
−23 | ![]() | 1 | 11 !!.! | 3 | t 1 edge | 3, 7 | ![]() | c 2 triangle | ![]() |
25 | ![]() | 1 | 11 !!.! | 3 | t 1 edge | 9, 13 | ![]() | c 2 triangle | ![]() |
29 | ![]() | 1 | 11 !!.! | 3 | t 1 edge | 10, 14 | ![]() | c 2 triangle | ![]() |
31 | ![]() | 3 | 11 !!.! | 3 | t 1 edge | 11, 15 | ![]() | c 2 triangle | ![]() |
−37 | ![]() | −3 | 13 !.!! | 3 | t 1 edge | 0, 2 | ![]() | c 2 triangle | ![]() |
−35 | ![]() | −1 | 13 !.!! | 3 | t 1 edge | 1, 3 | ![]() | c 2 triangle | ![]() |
−19 | ![]() | −1 | 13 !.!! | 3 | t 1 edge | 4, 6 | ![]() | c 2 triangle | ![]() |
17 | ![]() | −1 | 13 !.!! | 3 | t 1 edge | 8, 10 | ![]() | c 2 triangle | ![]() |
−17 | ![]() | 1 | 13 !.!! | 3 | t 1 edge | 5, 7 | ![]() | c 2 triangle | ![]() |
19 | ![]() | 1 | 13 !.!! | 3 | t 1 edge | 9, 11 | ![]() | c 2 triangle | ![]() |
35 | ![]() | 1 | 13 !.!! | 3 | t 1 edge | 12, 14 | ![]() | c 2 triangle | ![]() |
37 | ![]() | 3 | 13 !.!! | 3 | t 1 edge | 13, 15 | ![]() | c 2 triangle | ![]() |
−39 | ![]() | −3 | 14 .!!! | 3 | t 1 edge | 0, 1 | ![]() | c 2 triangle | ![]() |
−33 | ![]() | −1 | 14 .!!! | 3 | t 1 edge | 2, 3 | ![]() | c 2 triangle | ![]() |
−21 | ![]() | −1 | 14 .!!! | 3 | t 1 edge | 4, 5 | ![]() | c 2 triangle | ![]() |
15 | ![]() | −1 | 14 .!!! | 3 | t 1 edge | 8, 9 | ![]() | c 2 triangle | ![]() |
−15 | ![]() | 1 | 14 .!!! | 3 | t 1 edge | 6, 7 | ![]() | c 2 triangle | ![]() |
21 | ![]() | 1 | 14 .!!! | 3 | t 1 edge | 10, 11 | ![]() | c 2 triangle | ![]() |
33 | ![]() | 1 | 14 .!!! | 3 | t 1 edge | 12, 13 | ![]() | c 2 triangle | ![]() |
39 | ![]() | 3 | 14 .!!! | 3 | t 1 edge | 14, 15 | ![]() | c 2 triangle | ![]() |
−40 | ![]() | −4 | 15 !!!! | 4 | t 0 vertex | 0 | ![]() | c 3 tetrahedron | ![]() |
−38 | ![]() | −2 | 15 !!!! | 4 | t 0 vertex | 1 | ![]() | c 3 tetrahedron | ![]() |
−34 | ![]() | −2 | 15 !!!! | 4 | t 0 vertex | 2 | ![]() | c 3 tetrahedron | ![]() |
−22 | ![]() | −2 | 15 !!!! | 4 | t 0 vertex | 4 | ![]() | c 3 tetrahedron | ![]() |
14 | ![]() | −2 | 15 !!!! | 4 | t 0 vertex | 8 | ![]() | c 3 tetrahedron | ![]() |
−32 | ![]() | 0 | 15 !!!! | 4 | t 0 vertex | 3 | ![]() | c 3 tetrahedron | ![]() |
−20 | ![]() | 0 | 15 !!!! | 4 | t 0 vertex | 5 | ![]() | c 3 tetrahedron | ![]() |
−16 | ![]() | 0 | 15 !!!! | 4 | t 0 vertex | 6 | ![]() | c 3 tetrahedron | ![]() |
16 | ![]() | 0 | 15 !!!! | 4 | t 0 vertex | 9 | ![]() | c 3 tetrahedron | ![]() |
20 | ![]() | 0 | 15 !!!! | 4 | t 0 vertex | 10 | ![]() | c 3 tetrahedron | ![]() |
32 | ![]() | 0 | 15 !!!! | 4 | t 0 vertex | 12 | ![]() | c 3 tetrahedron | ![]() |
−14 | ![]() | 2 | 15 !!!! | 4 | t 0 vertex | 7 | ![]() | c 3 tetrahedron | ![]() |
22 | ![]() | 2 | 15 !!!! | 4 | t 0 vertex | 11 | ![]() | c 3 tetrahedron | ![]() |
34 | ![]() | 2 | 15 !!!! | 4 | t 0 vertex | 13 | ![]() | c 3 tetrahedron | ![]() |
38 | ![]() | 2 | 15 !!!! | 4 | t 0 vertex | 14 | ![]() | c 3 tetrahedron | ![]() |
40 | ![]() | 4 | 15 !!!! | 4 | t 0 vertex | 15 | ![]() | c 3 tetrahedron | ![]() |
Python fragment |
---|
face_to_signs = {-40: '−−−−', -39: '0−−−', -38: '+−−−', -37: '−0−−', -36: '00−−', -35: '+0−−', -34: '−+−−', -33: '0+−−', -32: '++−−', -31: '−−0−', -30: '0−0−', -29: '+−0−', -28: '−00−', -27: '000−', -26: '+00−', -25: '−+0−', -24: '0+0−', -23: '++0−', -22: '−−+−', -21: '0−+−', -20: '+−+−', -19: '−0+−', -18: '00+−', -17: '+0+−', -16: '−++−', -15: '0++−', -14: '+++−', -13: '−−−0', -12: '0−−0', -11: '+−−0', -10: '−0−0', -9: '00−0', -8: '+0−0', -7: '−+−0', -6: '0+−0', -5: '++−0', -4: '−−00', -3: '0−00', -2: '+−00', -1: '−000', 0: '0000', 1: '+000', 2: '−+00', 3: '0+00', 4: '++00', 5: '−−+0', 6: '0−+0', 7: '+−+0', 8: '−0+0', 9: '00+0', 10: '+0+0', 11: '−++0', 12: '0++0', 13: '+++0', 14: '−−−+', 15: '0−−+', 16: '+−−+', 17: '−0−+', 18: '00−+', 19: '+0−+', 20: '−+−+', 21: '0+−+', 22: '++−+', 23: '−−0+', 24: '0−0+', 25: '+−0+', 26: '−00+', 27: '000+', 28: '+00+', 29: '−+0+', 30: '0+0+', 31: '++0+', 32: '−−++', 33: '0−++', 34: '+−++', 35: '−0++', 36: '00++', 37: '+0++', 38: '−+++', 39: '0+++', 40: '++++'}
for face_int, face_signs in face_to_signs.items():
indices = [i for i, x in enumerate(face_signs) if x != '0']
weight = len(indices)
tess_dim = 4 - weight
cross_dim = [4, 0, 1, 2, 3][weight]
tess_type = ['vertex', 'edge', 'square', 'cube', 'tesseract'][tess_dim]
cross_type = ['vertex', 'edge', 'triangle', 'tetrahedron', '16-cell'][cross_dim]
|
This article is issued from Wikiversity. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.