
1. Segmentation and Paging

Young W. Lim

2021-07-05 Mon

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 1 / 72



Outline

1 Based on

2 Segmentation and Paging
Segments and Sections in ELF
Segmentation and Paging

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 2 / 72



Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 3 / 72

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html


Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 4 / 72



TOC: Segments and Sections in ELF

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 5 / 72



Sections (1)

tell the linker if a section is either:
raw data to be loaded into memory,

e.g. .data, .text, etc., or

formatted metadata about other sections,
used by the linker, but discarded at runtime

e.g. .symtab, .srttab, .rela.text

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 6 / 72



Sections (2)

size of each section except stack
is specified in ELF file
sections which are initialized from the ELF file

code (i.e., .text)
read-only data
initialized data segments

other remaining sections are initially zero-filled
sections have their own specified alignment

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 7 / 72



Sections (3)

sections comprise all information needed for
linking a target object file in order
to build a working executable.
sections are needed on linktime
but they are not needed on runtime.
a Section Header Table :
an array of Elfxx_Shdr structures,
having one Elfxx_Shdr entry per section.

https://www.intezer.com/intezer-analyze/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 8 / 72



Sections (4)

Section Header Table Structure
sh_name index of section name in section header string table
sh_type section type
sh_flags section attributes
sh_addr virtual address of section
sh_offset section offset in disk.
sh_size section size.
sh_link section link index.
sh_Info Section extra information.
sh_addralign section alignment.
sh_entsize size of entries contained in section.

https://www.intezer.com/intezer-analyze/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 9 / 72



Sections (5)

some sections
.text code
.data initialised data
.rodata initialised read-only data
.bss uninitialized data
.plt PLT (Procedure Linkage Table) (IAT equivalent)
.got GOT entries dedicated to dynamically linked global variables
.got.plt GOT entries dedicated to dynamically linked functions
.symtab global symbol table
.dynamic Holds all needed information for dynamic linking
.dynsym symbol tables dedicated to dynamically linked symbols
.strtab string table of .symtab section
.dynstr string table of .dynsym section
.interp RTLD embedded string
.rel.dyn global variable relocation table
.rel.plt function relocation table

https://www.intezer.com/intezer-analyze/
Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 10 / 72



Segments (1)

tells the operating system:
where should a segment be loaded into virtual memory
what permissions the segments have (read, write, execute).
Remember that this can be efficiently enforced by the processor:

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 11 / 72



Segments (2)

a segment contains one or more sections
the linker puts sections into segments

a linker script (text file) can specify
how sections are put into segments by ld in binutil

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 12 / 72



Segments (3)

segments are page aligned
3 segments

.text, .rodata

.data. .bss, .sbss
stack

not all programs contain this
many segments and sections

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 13 / 72



Segments (4)

Segments, which are commonly known as Program Headers,
break down the structure of an ELF binary into suitable chunks
to prepare the loading of the executable into memory.
Program Headers are not needed on linktime.
every ELF binary contains a Program Header Table
which comprises of a single Elfxx_Phdr structure per existing
segment.

https://www.intezer.com/intezer-analyze/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 14 / 72



Segments (5)

Program Header Table Structure
p_type segment type.ELF Header
p_flags segment attributes.
p_offset file offset of segment.
p_vaddr virtual address of segment.
p_paddr physical address of segment.
p_filesz size of segment on disk.
p_memsz size of segment in memory.
P_align segment alignment in memory.

https://www.intezer.com/intezer-analyze/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 15 / 72



Segments (6)

Some segment types
PT_NULL unassigned segment

usually first entry of Program Header Table
PT_LOAD loadable segment
PT_INTERP segment holding .interp section.
PT_TLS Thread Local Storage segment

common in statically linked binaries
PT_DYNAMIC holding .dynamic section.

https://www.intezer.com/intezer-analyze/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 16 / 72



Sections and segments (1)

a section contain linktime information
static data for the linker
the section header table

a segment contain runtime information
dynamic data for the OS
the program header (segment) table

a segment can contain 0 or more sections

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 17 / 72



Sections and segments (2)

ELF files are composed of sections and segments
sections gather all needed information
to link a given object file and build an executable
Program Headers split the executable
into segments with different attributes,
which will eventually be loaded into memory

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 18 / 72



Sections and segments (3)

can consider segments as a tool to help the linux loader,
as they group sections by attributes into single segments
for the efficient loading process of the executable
instead of loading each individual section into memory.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 19 / 72



Sections and segments (4)

offsets and virtual addresses of segments
must be congruent modulo the page size
their p_align field must be a multiple of the system page size.
The reason for this alignment is to prevent
the mapping of two different segments
within a single memory page.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 20 / 72



Sections and segments (5)

different segments usually have different access attributes
different segments cannot be mapped within the same memory page.
the default segment alignment for PT_LOAD segments
is usually a system page size
The value of this alignment will vary in different architectures.

https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-segments/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 21 / 72



TOC: Segmentation and Paging

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 22 / 72



Structure of process address space

text : program instructions
execute-only, fixed size

data : variables (global, heap)
read/write, variable size
dynamic allocation by request

stack : activation records
read/write, variable size
automatic growing / shrinking

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 23 / 72



Segmented address space

address space is a set of segments
segment ; a linearly addressed memory

typically contains logically related information
program code, data, stack

each segment has an identifier s, and a size n
s ∈ [0,S − 1], S = number of segments

logical addresses are of form (s, i)
offset i within a segment s, and i < n

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 24 / 72



Segmented address translation for segments

segment table contains, for each segment s
base, bound, permission, valid bits

logical address (s,i) to physical address translation
check if operation is permitted
check if i < s.bound
physical address = s.base + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 25 / 72



Segmented address translation example

32-bit logical address
10-bit segment s
22-bit offset i

segment table base register
segment table bound register
segment table entry

v, perm, base, bound

segtable[s].base + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 26 / 72



Advantaes of segmentation

each segment can be
located independently
separately protected
grow independently

seqments can be shared between processes

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 27 / 72



Problems of segmentation

variable allocation
difficult to find holes in physical memory
must use one of non-trivial placement algorithms

first fit, next fit, best fit, worst fit

external fragmentation

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 28 / 72



Paged address space (1)

address space is linear sequence of pages
page
physical unit of information
fixed size

physicl memory is linear sequence of frames
a page fits exactly into a frame

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 29 / 72



Paged address space (2)

each page is identified by a page number 0 to N-1
N = number of pages in address space
N * page size = size of address space

logical addresses are of form (p, i)
offset i within page p
i < page size

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 30 / 72



Paged address translation for pages

page table contains, for each page p
frame number that corresponds to p
perms, valid, reference, modified bits

logical address (p, i) to physical address translation
check if operation is permitted
physical address = p.frame + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 31 / 72



Paged address translation example

32-bit logical address
22-bit page p
10-bit offset i

page table register
page table entry

v, r, m, perm, frame #

32-bit physical address
pagep[p].frame + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 32 / 72



Multi-level page tables

32-bit logical address
12-bit page dir d
10-bit page p
10-bit offset i

32-bit physical address
dir[d]->page[p].frame + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 33 / 72



Segmentation vs. paging

segment is good logical unit of information
sharing, protection

page is good physical unit of information
simple memory management

combining both
segmentation on top of paging

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 34 / 72



Cost of translation

each page table costs a memory reference
for each reference, additional references required
slows machine down by factor of 2 or more

take advantage of locality of reference
most references are to a small number of pages
keep translations of these in high speed memory

problem
we don’t know which pages until referenced

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 35 / 72



Segmentation Unit (a)

Segment Selector: It is the address present in Segment registers that
will point to the particular Segment descriptor at a offset in GDT.
Offset (Effective address): It is nothing but the memory address user
see inside a program or anywhere in the system.
Global Descriptor table: This is the table whose base address present
in GDTR register and it contains Segment descriptors.
Segment descriptor: It contains base phisical address(and few more
info) from which offset is added to get the exact linear address.

https://nixhacker.com/segmentation-in-intel-64-bit/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 36 / 72



Segmentation Unit (b)

A segment selector is a 16 bit value held in a segment register. It is
used to select an index for a segment descriptor from one of two
tables.

GDT - Global Descriptor Table - for use system-wide
LDT - Local Descriptor Table - intended to be a table perprocess and
switched when the kernel switches between process contexts

There are six segment registers used to store these segment selector.
CS - Code Segment
SS - Stack Segment
DS - Data Segment
ES/FS/GS - Extra (usually data) segment registers

https://nixhacker.com/segmentation-in-intel-64-bit/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 37 / 72



Segmentation Unit (c)

For any kind of program execution to take place, at least CS, SS and
DS segment registers must be loaded with valid segment selectors.
Segment register also contains a hidden part along with segment
selector that is used for caching purpose.

https://nixhacker.com/segmentation-in-intel-64-bit/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 38 / 72



Segmentation Unit (d)

Segment Selector Format
15-3 : Index 2 : Table Indicator (0: GDT, 1:LDT) 1-0 : RPL
(Requested Privilege Level)
Table Indicator: Denotes if the descriptor that this particular selector
points to is part of GDT table or LDT table.
RPL: 2 bit. Can be between 0-3. It is the privilege level that the task
(or segment selector of the task) has. We will talk more on this later.

https://nixhacker.com/segmentation-in-intel-64-bit/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 39 / 72



Segmentation Unit (e)

GDTR register holds a base address(32 bit in x32 and 64 bit in
IA-32e(x64)) and 16-bits table limit for GDT. GDTR
GDT is the table that contain all the Segment descriptors. Each
segment has a segment descriptor, which specifies the size of the
segment, the access rights and privilege level required for accessing the
segment, the segment type, and the location of the first byte of the
segment in the linear address space (called the base address of the
segm

https://nixhacker.com/segmentation-in-intel-64-bit/

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 40 / 72



Segmentation Unit (f)

A segment descriptor is mostly 8 bytes ( or 16 byte for system
segment in x64). The format looks like this:
You can read more about each field in Intel developer’s manual Vol-3a
3.4.5. We will cover only few important fields.
Base (32 bits) - linear address where the segment starts
Limit (20 bits) - Size of segment (either in bytes or 4kb blocks). End
address of segment = base + limit.
G (Granularity) flag - if 0, interpret limit as size in bytes. If 1,
interpret as size in 4kb blocks.
D/B - Default operation size flag. 0 = 16 bit default, 1 = 32 bit
default. This is what actually controls whether an overloaded opcode
is interpreted as dealing with 16 or 32 bit register/memory sizes
DPL (Descriptor Privilege Level - 2 bits) - Specify the privilage level
required by the descriptor. More on this in next section.

https://nixhacker.com/segmentation-in-intel-64-bit/
Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 41 / 72



Segmentation Unit (g)
; offset 0x0
.null descriptor:

dq 0

; offset 0x8
.code: ; cs should point to this descriptor
dw 0xffff ; segment limit first 0-15 bits
dw 0 ; base first 0-15 bits
db 0 ; base 16-23 bits
db 0x9a ; access byte
db 11001111b ; high 4 bits (flags) low 4 bits (limit 4 last bits)(limit is 20 bit wide)
db 0 ; base 24-31 bits

; offset 0x10
.data: ; ds, ss, es, fs, and gs should point to this descriptor
dw 0xffff ; segment limit first 0-15 bits
dw 0 ; base first 0-15 bits
db 0 ; base 16-23 bits
db 0x92 ; access byte
db 11001111b ; high 4 bits (flags) low 4 bits (limit 4 last bits)(limit is 20 bit wide)
db 0 ; base 24-31 bits

https://en.wikipedia.org/wiki/Global_Descriptor_Table
Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 42 / 72



Segmentation Unit (h)

What "Limit 0:15" means is that the field contains bits 0-15 of the
limit value.
The base is a 32 bit value containing the linear address where the
segment begins.
The limit, a 20 bit value, tells the maximum addressable unit (either in
1 byte units, or in pages).
Hence, if you choose page granularity (4 KiB) and set the limit value
to 0xFFFFF the segment will span the full 4 GiB address space.

https://wiki.osdev.org/Global_Descriptor_Table

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 43 / 72



Segmentation Unit (i)

In the Intel Architecture,
and more precisely in protected mode,
most of the memory management and
Interrupt Service Routines are
controlled through tables of descriptors
Each descriptor stores information
about a single object
the CPU might need at some time.

a service routine
a task
a chunk of code or data

https://wiki.osdev.org/GDT_Tutorial

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 44 / 72



Segmentation Unit (j)

for example, if you try to load a new value
into a segment register,
the CPU needs to perform safety
and access control checks
to see whether you’re actually entitled
to access that specific memory area.
Once the checks are performed, useful values
are cached in invisible registers of the CPU.
(such as the lowest and highest addresses)

https://wiki.osdev.org/GDT_Tutorial

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 45 / 72



Segmentation Unit (k)

Intel defined 3 types of tables:
the Interrupt Descriptor Table
(which supplants the IVT)
the Global Descriptor Table (GDT)
the Local Descriptor Table

each table is defined as a (size, linear address)
to the CPU through the LIDT, LGDT, LLDT instructions, respectively.
in most cases, the OS simply tells where those tables are
once at boot time, and then simply goes writing/reading the tables
through a pointer.

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 46 / 72



Segmentation Unit (l)

LGDT / LIDT loads the values in the source operand into
the global descriptor table register (GDTR) or
the interrupt descriptor table register (IDTR).
the source operand specifies a 6-byte memory location
that contains the base address (a linear address) and
the limit (size of table in bytes) of the GDT or the IDT

https://www.felixcloutier.com/x86/lgdt:lidt

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 47 / 72



Segmentation Unit (m)

If operand-size attribute is 32 bits,
a 16-bit limit (lower 2 bytes of the 6-byte data operand) and
a 32-bit base address (upper 4 bytes of the data operand)
are loaded into the register.
If the operand-size attribute is 16 bits,
a 16-bit limit (lower 2 bytes) and
a 24-bit base address (third, fourth, and fifth byte) are loaded.
Here, the high-order byte of the operand is not used and
the high-order byte of the base address in the GDTR or IDTR
is filled with zeros.

https://www.felixcloutier.com/x86/lgdt:lidt

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 48 / 72



Segmentation Unit (n)

The LGDT and LIDT instructions are used
only in operating-system software;
they are not used in application programs.
They are the only instructions that directly load a linear address
(that is, not a segment-relative address) and
a limit in protected mode.
They are commonly executed in real-address mode
to allow processor initialization prior to switching
to protected mode.

https://www.felixcloutier.com/x86/lgdt:lidt

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 49 / 72



Segmentation Unit (1)

To translate a logical address into a corresponding linear address.
the segmentation unit performs the following operations:

Examines the ti field of the Segment Selector
to determine which Descriptor Table (gdt / ldt)
stores the Segment Descriptor

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 50 / 72



Segmentation Unit (2)

ti field indicates that the Descriptor is
either in the GDT
in this case, the segmentation unit gets
the base linear address of the GDT from the gdtr register
or in the active LDT
in this case the segmentation unit gets
the base linear address of that LDT from the ldtr register

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 51 / 72



Segmentation Unit (3)

Computes the address of the Segment Descriptor
from the index field of the Segment Selector
The index field is multiplied by 8
(the size of a Segment Descriptor), and
the result is added to the content of the gdtr or ldtr register.
Adds the offset of the logical address
to the base field of the Segment Descriptor,
thus obtaining the linear address.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 52 / 72



Segmentation Unit (4)

Notice that, thanks to the nonprogrammable registers associated with
the segmentation registers, the first two operations need to be
performed only when a segmentation register has been changed.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 53 / 72



Segmentation Unit (5)

a logical address
Selector [Index | TI]
Offset

a descriptor location in gdt / ldt
base address

gdtr / ldtr <- TI in Selector
offset address

8*Index in Selector

a linear address
base address

descriptor content in gdt / ldt
offset address

offset of a logical address

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 54 / 72



GDT (General Descriptor Table)

The 2.4 version of Linux uses segmentation
only when required by the 80 x 86 architecture.
In particular, all processes use the same logical addresses,
so the total number of segments to be defined is quite limited,
and it is possible to store all Segment Descriptors
in the Global Descriptor Table (GDT).
This table is implemented by the array gdt_table
referred to by the gdt variable.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 55 / 72



LDT (Local Descriptor Table)

Local Descriptor Tables are not used by the kernel,
although a system call called modify_ldt( ) exists
that allows processes to create their own LDTs.
This turns out to be useful to applications (such as Wine)
that execute segment-oriented Microsoft Windows applications.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 56 / 72



A kernel code segments (1)

The fields of the corresponding Segment Descriptor in the GDT

Base = 0x00000000

Limit = 0xfffff

G (granularity flag) = 1, for segment size expressed in pages
S (system flag) = 1, for normal code or data segment
Type = 0xa, for code segment that can be read and executed
dpl (Descriptor Privilege Level) = 0, for Kernel Mode
D/B (32-bit address flag) = 1, for 32-bit offset addresses

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 57 / 72



A kernel code segments (2)

Thus, the linear addresses associated with that segment start at 0
and reach the addressing limit of 232 -1.
The S and Type fields specify that the segment is a code segment
that can be read and executed.
Its dpl value is 0, so it can be accessed only in Kernel Mode.
The corresponding Segment Selector is defined by the __kernel_cs
macro.
To address the segment, the kernel just loads the value yielded
by the macro into the cs register.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 58 / 72



A kernel data segments (1)

The fields of the corresponding Segment Descriptor in the GDT

Base = 0x00000000
Limit = 0xfffff

G (granularity flag) = 1, for segment size expressed in pages
S (system flag) = 1, for normal code or data segment
Type = 2, for data segment that can be read and written
dpl (Descriptor Privilege Level) = 0, for Kernel Mode
D/B (32-bit address flag) = 1, for 32-bit offset addresses

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 59 / 72



A kernel data segments (2)

This segment is identical to the previous one
(in fact, they overlap in the linear address space),
except for the value of the Type field,
which specifies that it is a data segment
that can be read and written.
The corresponding Segment Selector is defined
by the __kernel_ds macro.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 60 / 72



A user code segments (1)

A user code segment shared by all processes in User Mode.
The fields of the corresponding Segment Descriptor in the GDT

Base = 0x00000000
Limit = 0xfffff

G (granularity flag) = 1, for segment size expressed in pages
S (system flag) = 1, for normal code or data segment
Type = 0xa, for code segment that can be read and executed
dpl (Descriptor Privilege Level) = 3, for User Mode
D/B (32-bit address flag) = 1, for 32-bit offset addresses

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 61 / 72



A user code segments (2)

The S and dpl fields specify that the segment is not a system segment
and its privilege level is equal to 3;
it can thus be accessed both in Kernel Mode and in User Mode.
The corresponding Segment Selector is defined
by the __USER_CS macro.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 62 / 72



A user data segments (1)

A user data segment shared by all processes in User Mode.
The fields of the corresponding Segment Descriptor in the GDT

Base = 0x00000000
Limit = 0xfffff

G (granularity flag) = 1, for segment size expressed in pages
S (system flag) = 1, for normal code or data segment
Type = 2, for data segment that can be read and written
dpl (Descriptor Privilege Level) = 3, for User Mode
D/B (32-bit address flag) = 1, for 32-bit offset addresses

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 63 / 72



A user data segments (2)

This segment overlaps the previous one:
they are identical, except for the value of Type.
The corresponding Segment Selector is defined
by the __user_ds macro.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 64 / 72



A default Local Descriptor Table (LDT) (1)

A default Local Descriptor Table (LDT) that is usually shared by all
processes.
This segment is stored in the default_ldt variable.
The default LDT includes a single entry consisting of a null Segment
Descriptor.
Each processor has its own LDT Segment Descriptor, which usually
points to the common default LDT segment;
its Base field is set to the address of default_ldt and its Limit field is
set to 7.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 65 / 72



A default Local Descriptor Table (LDT) (2)

When a process requiring a nonempty LDT is running, the LDT
descriptor in the GDT corresponding to the executing CPU is replaced
by the descriptor associated with the LDT that was built by the
process.

https://www.halolinux.us/kernel-reference/segmentation-in-linux.html

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 66 / 72



Logical addresses in intel x86 (1)

Whenever your program executes, CPU generates
logical address for instructions which contains

( 16-bit segment selector, 32-bit offset )

basically virtual (linear) address is generated
using logical address fields

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 67 / 72



Logical addresses in intel x86 (2)

( 16-bit segment selector, 32-bit offset )
segment selector (identifier) refers to

code segment
data segment
stack segment etc.

segment selector is 16-bit field
the first 13-bit is index
a pointer to the segment descriptor resides in GDT
1 bit TI field

TI = 1 Refer LDT (Local Descriptor Table)
TI = 0 Refer GDT (Global Descriptor Table)

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 68 / 72



Logical addresses in intel x86 (3)

Linux contains one GDT/LDT
(Global/Local Descriptor Table)

contains 8 byte descriptor of each segments and
holds the base (virtual) address of the segment.

So for for each logical address,
virtual address is calculated using the following steps.

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 69 / 72



Logical addresses in intel x86 (4)

1 examines the TI field of the segment selector
to determine which descriptor table stores the segment descriptor
TI field indicates that

the descriptor is in the GDT
the segmentation unit gets the base linear address of the GDT
from the gdtr register
the descriptor is in the active LDT
the segmentation unit gets the base linear address of that LDT
from the ldtr register

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 70 / 72



Logical addresses in intel x86 (5)

2 Computes the address of the segment descriptor
from the index field of the segment selector
the index field is multiplied by 8 (the segment descriptor size),
and the result is added to the content of the gdtr or ldtr register.

3 adds the offset of the logical address
to the base field of the segment descriptor
thus obtaining the linear (virtual) address.

Now it is the job of paging unit
to translate physical address from virtual address.
https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 71 / 72



Logical addresses in intel x86 (6)

normally every address issued (for x86 architecture)
is a logical address which is translated to a linear address
via the segment tables.
After the translation into linear address,
it is then translated to physical address via page table.

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim 1. Segmentation and Paging 2021-07-05 Mon 72 / 72


	Based on
	Segmentation and Paging
	Segments and Sections in ELF
	Segmentation and Paging


