
2. MMU and TLB

Young W. Lim

2021-07-06 Tue

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 1 / 35



Outline

1 Based on

2 Virtual memory
Memory Management Unit and Translation Lookaside Buffer

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 2 / 35



Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 3 / 35

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html


Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 4 / 35



TOC: Memory Management Unit

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 5 / 35



MMU and TLB

Memory Management Unit (MMU)
hardware unit that translates a virtual address
to a physical address
every memory reference is passed through the MMU

Translation Lookaside Buffer (TLB)
a cache for the virtual-to-physical translations table of MMU
not needed for correctness
but source of significant performance gain

https://cseweb.ucsd.edu/classes/su09/cse120/lectures/Lecture7.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 6 / 35



MMU (Memory Management Unit) (1)

MMU (memory-management unit) hardware
maps logical address to physical address

OS together with MMU
the user program generates the logical address and
thinks that the program is running in this logical address
but to access physical memory for its execution,
this logical address must be mapped
to the physical address by MMU

https://www.geeksforgeeks.org/logical-and-physical-address-in-operating-system/

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 7 / 35



MMU (Memory Management Unit) (2)

MMU is the hardware responsible for
implementing virtual memory
sits between the CPU core and memory
usually the part of the physical CPU
separate from the RAM controller
DDR controller is a separate IP block

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 8 / 35



MMU (Memory Management Unit) (3)

transparently handles all memory accesses
from load / store instructions
maps memory acceses using virtual addresses
to system RAM and peripheral hardware
handles permissions
generates an exception (page fault)
on an invalid access

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 9 / 35



MMU (Memory Management Unit) (4)

the MMU manages virtual address mappings
maps virtual addresses to physical addresses

the MMU operates on basic units of memory : pages
page size varies by architecture
some architectures have configurable page sizes

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 10 / 35



MMU (Memory Management Unit) (5)

common page sizes
ARM - 4k
ARM64 - 4k or 64k
MIPS - widely configurable
x86 - 4k

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 11 / 35



MMU (Memory Management Unit) (6)

a page is
a unit of memory size
aligned at the page size
abstract

a page frame refers to
a physical memory block
which is page sized and page aligned
physical

the pfn (page frame number) is often
used to refer to physical page frames
in the kernel

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 12 / 35



MMU (Memory Management Unit) (7)

the MMU operates on pages
the MMU maps physical frames to virtual addresses
a memory map for a process contains many mappings
a mapping often covers multiple pages
the TLB holds each mapping

virtual address
physical address
permissions

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 13 / 35



TLB (Translation Lookaside Buffer)

when CPU accesses a virtual address
TLB is consulted by the MMU

if the virtual address is in the TLB,
the MMU can look up the physical address
if the virtual address is not in the TLB,
the MMU will generate a page fault exception
and interrupt the CPU
if the virtual address is in the TLB,
but the permissions are insufficient,
the MMU will generate a page fault

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 14 / 35



TLB (translation lookaside buffer) (1)

Virtual Memory would not be very effective
if every virtual memory address had to be translated
by looking up the associated physical page in memory.
the solution is to cache the recent translations
in a Translation Lookaside Buffer (TLB)

https://courses.cs.washington.edu/courses/cse378/00au/Lec28.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 15 / 35



TLB (translation lookaside buffer) (2)

the TLB is a small cache of
the most recent virtual-physical mappings
by checking here first, temporal locality is exploited
to speed virtual address transaltion

while a virtual-to-physical translation is under way,
the hardware checks to see if it has seen
this translation recently

https://courses.cs.washington.edu/courses/cse378/00au/Lec28.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 16 / 35



TLB (translation lookaside buffer) (3)

fast associative memory
keeps most recent translations
(logical page, page frame)
determine whether non-offset part of LA
(logical address) is in TLB (translation lookaside buffer)

if so, get corresponding frame num for physical address
if not, wait for normal memory translation (parallel)

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 17 / 35



Translation cost with TLB

cost is determined by
speed of memory : ~ 100 nsec
speed of TLB : ~ 20 nsec
hit ratio : fraction of refs satisfied by TLB, ~95%

Speed with no address translation : 100 nsec
Speed with address translation

TLB miss : 200 nsec (100% slowdown)
TLB hit : 120 nsec (20% slowdown)
avarage : 120 * .95 + 200 * .05 = 124 nsec

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 18 / 35



TLB design issues

the larger the TLB
the higher the hit ratio
the slower the response
the greater the expense

TLB has a major effect on performance
must be flushed on context switches
alternative : tagging entries with PIDs

MIPS: has only a TLB, no page tables
devote more chip space to TLB

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 19 / 35



Basic TLB mappings (1)

user virtual address space
mapped pages unmapped space

physical address space
allocated frames

TLB mapings
TLB entries (page, page frame)
virtually contiguous regions
not physically contiguous

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 20 / 35



Basic TLB mappings (2)

mappings to virtually contiguous regions
do not have to be physically contiguous
easy memory allocation
almost all user space code does not need
physically contiguous memory

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 21 / 35



Multiple processes

each process has its own set of mappings
the same virtual addresses in two different processes
will likely be used to map different physical addresses

(page, page frame1) for process 1
(page, page frame2) for process 2

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 22 / 35



Shared memory (1)

shared memory is easily implemented with an MMU
simply map the same physical frame
into two different processes
the virtual addresses need not be the same

for pointers to values inside a shared memory region
the virtual addresses must be the same

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 23 / 35



Shared memory (2)

the shared memory region can be mapped to
different virtual addresses in each process

the mmap() system call allows the user space process
to request a specific virtual address
to map the shared memory region

if the kernel cannot grant a mapping at this address,
mmap() returns with failure

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 24 / 35



Page faults

when a process acceses a region of memorythat is not mapped,
the MMU will generate a page fault exception

the kernel handles page fault exceptions regularly
as part of its memory management design

TLB can contain only the part of the required maps for a process
page faults at context switch time
lazy allocation

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 25 / 35



Lazy allocation (1)

the kernel does not allocate pages immeidately
that are requested by a process
the kernel will wait until those pages are actually used

lazy allocation to optimize a performance
if the requested pages may not be actually used,
then the allocation will never happen

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 26 / 35



Lazy allocation (2)

when memory is requested for allocation,
the kernel simply creates
a record of the request in its page tables
and then returns (quickly) to the process,
without updating the TLB

when that newly-allocated memory is actually accessed,
the CPU will generate a page fault,
because the CPU doesn’t know about the mapping
(no entry in the TLB)

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 27 / 35



Lazy allocation (3)

in the page fault handler,
the kernel uses its page tables
to determine that the mapping is valid
(from the kernel’s point of view)
yet unmapped in the TLB

the kernel will allocate a physical page frame
and update the TLB with the new mapping

the kernel returns from the exception handler and
user space program can resume

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 28 / 35



Lazy allocation (4)

in a lazy allocation case, the user space program
is never aware that the page fault happened

the page fault can only be detected
at the time that was lost to handle it

for processses that are time-sensitive
pages can be pre-faulted, or simply touched,
at the start of execution

see also mlock() and mlockall()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 29 / 35



Page tables (1)

the entries in the TLB are a limited resource
far more mappings can be made than can exist
in the TLB at one time
the kernel must keep track of all of the mappings
at all times
the krenel stores all these informations
in the page tables
stuct_mm and vm_area_struct

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 30 / 35



Page tables (2)

since the TLB can only hold a limited subset of
the total mappings for a process,
some valid mappings will not have TLB entries
when these addresses are touched
the CPU will generate a page fault
because the CPU has no knowledge of the mapping
only the kernel does

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 31 / 35



Page tables (3)

the page fault handler will
find the appropriate mapping for the offending addresses
in the krenel’s page tables
select and remove an existing TLB entry
create a TLB entry for the page
containing the address
return to the user space process

observe the similarities to lazy allocation handling

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 32 / 35



Swapping (1)

when memory utilization is high,
the kernel may swap some frames to disk
to free up RAM

the MMU makes this possible
the kernel may copy a frame to disk and
remove its TLB entry
the frame may be reused by another process

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 33 / 35



Swapping (2)

when the frame is needed again,
the CPU will generate a page fault
because the address is not in the TLB

at a page fault time, the kernel can
put the process to sleep
copy the frame from the disk
into an unused frame in RAM
fix the page table entry
wake the process

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 34 / 35



Swapping (3)

note that when the page is restored to RAM,
it is not necessarily restored to the same physical frame
where it originally was located (before being swapped out)

the MMU will use the same virtual address though,
so the user space program will not know the difference

this is why user space memory cannot
typically be used for DMA

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 2. MMU and TLB 2021-07-06 Tue 35 / 35


	Based on
	Virtual memory
	Memory Management Unit and Translation Lookaside Buffer


