3. User Space Allocation

Young W. Lim

2021-09-11 Sat

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 1/51

Outline

@ Based on

© umap system call
© umap examples |
@ umap examples I

© brk() and sbrk() system calls

2021-09-11 Sat

2/51

Young W. Lim 3. User Space Allocation

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

3. User Space Allocation 2021-09-11 Sat 3/5

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gce -v

gcc -m32 t.c

sudo apt-get install gcc-multilib
sudo apt-get install g++-multilib
gcc-multilib

g+t+-multilib

gcc -m32

objdump -m 1386

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 4/51

TOC: mmap system call

memory-mapped file 1/0
allocating memory

munmap, mprotect, madvise
virtual address mapping

input parameter addr
non-NULL input parameter addr
file-backed mapping

anonymous mapping

memory protection

shared mapping

private mapping

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 5/51

(1) memory-mapped file I/O

@ system call that maps files or devices into memory.
@ a method of memory-mapped file /O

@ implements demand paging

o file contents are not read from disk directly and
initially do not use physical RAM at all.

o the actual reads from disk are performed in a lazy manner,
after a specific location is accessed.

https://en.wikiversity.org/wiki/File:ARM.2ASM. Interrupt.20210707.pdf

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

(2) allocating memory

e mmap () is the standard way to allocate
large amounts of memory from user space

@ while mmap () is often used for files,
the MAP_ANONYMOUS flag causes mmap ()
to allocate normal memory for the process

@ the MAP_SHARED flag can make the allocated pages
sharable with other processes

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 7/51

(3) munmap, mprotect, madvise

@ after the memory is no longer needed,
it is important to munmap the pointers to it.

@ protection information can be managed using mprotect

@ special treatment can be enforced using madvise

https://en.wikiversity.org/wiki/File:ARM.2ASM. Interrupt.20210707.pdf

Young W. Lim

3. User Space Allocation 2021-09-11 Sat

(4) virtual address mapping

mmap system call

void *mmap(void *addr, size_t length,
int prot, int flags,int fd, off_t offset);
int munmap(void *addr, size_t length);

e mmap() creates a new mapping
in the virtual address space of the calling process.

o the address of the new mapping is returned
as the result of the call.

e addr : the starting address for the new mapping
e length : the length of the new mapping
(which must be greater than 0).

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

input parameter addr

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

o If addr is NULL,
then the kernel chooses the (page-aligned) address
at which to create the mapping;

o this is the most portable method of creating a new mapping.
o If addr is not NULL,

then the kernel takes it as a hint
about where to place the mapping;

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

non-NULL input parameter addr

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

@ the kernel will pick a nearby page boundary
and attempt to create the mapping there.
(but always above or equal to the value specified by
/proc/sys/vm/mmap_min_addr)

o if another mapping already exists there,
the kernel picks a new address
that may or may not depend on the hint.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 11/51

(7) file-backed mapping

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

o file-backed mapping maps
an area of the process’s virtual memory to files;
i.e. reading those areas of memory causes the file to be read.

@ the default mapping type.
@ without MAP_ANONYMQUS flag

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 12/51

file backed mapping

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

@ The contents of a file mapping are initialized
using length bytes starting at offset offset
in the file referred to by the file descriptor £d.

@ offset must be a multiple of the page size

o after the mmap () call has returned,
the file descriptor, £d, can be closed immediately
without invalidating the mapping.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 13/51

) anonymous mapping

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

@ anonymous mapping maps
an area of the process’s virtual memory not backed by any file

@ the contents are initialized to zero
e similar to malloc, and is used
in some malloc implementations for certain allocations.
o However, anonymous mappings are not part of the POSIX standard,
though implemented by almost all operating systems
by the MAP_ANONYMOUS and MAP_ANON flags.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 14 /51

(10) anonymous mapping

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

@ the mapping is not backed by any file
@ its contents are initialized to zero.

o the fd argument is ignored; however,
some implementations require fd to be -1
if MAP_ANONYMOUS (or MAP_ANON) is specified,
and portable applications should ensure this.

@ the offset argument should be 0

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

(11) memory protection

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

@ the prot argument describes
the desired memory protection of the mapping

@ must not conflict with the open mode of the file

@ either PROT_NONE or the bitwise OR of
one or more of the following flags:
PROT_EXEC Pages may be executed.
PROT_READ Pages may be read.
PROT_WRITE Pages may be written.
PROT_NONE Pages may not be accessed.

https://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 16 /51

(12) shared mapping

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

o the MAP_SHARED flag is set :
if the mapping is shared, then the mapping
is preserved across a fork system call.

e changes in a mapped area in one process are immediately visible
in all related (parent, child or sibling) processes.

o if the mapping is shared and backed by a file
(MAP_SHARED and not MAP_ANONYMOUS)
the underlying file medium is only guaranteed to be written
after it is msync'ed.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 17 /51

(13) private mapping

mmap system call

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

@ the MAP_PRIVATE flag is set :
if the mapping is private, the changes will
neither be seen by other processes
nor written to the file.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 18 /51

(14) munmap system call

munmap system call
int munmap(void *addr, size_t length);

o deletes the mappings for the specified address range,

@ causes further references to addresses within the range
to generate invalid memory references

@ the region is also automatically unmapped
when the process is terminated

@ just closing the file descriptor does not unmap the region.

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 19/51

(15) munmap system call

munmap system call
int munmap(void *addr, size_t length);

@ the address addr must be
a multiple of the page size
@ all pages containing a part
of the indicated range are unmapped

@ subsequent references to these pages
will generate SIGSEGV.

@ It is not an error if the indicated range
does not contain any mapped pages

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

TOC: mmap example |

code skeleton
file-backed mapping
anonymous mapping

aruments example

mmap example code

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 21 /51

Example | (1) code skeleton

mmap code skeleton

const char stri[] = "string 1";
const char str2[] = "string 2";
char *anon, *zero;

anon = (char*) mmap

(NULL, 4096, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0);
zero = (char*) mmap

(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

if (anon == MAP_FAILED || zero == MAP_FAILED)
errx(1l, "either mmap");

strcpy(anon, stril);
strcpy(zero, strl);

printf ("PID %d:\tanonymous %s, zero-backed %s\n", parpid, anon, zero);

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

Example | (2) file-backed mapping

file-backed mapping call example

fd = open("/dev/zero", O_RDWR, 0);
zero = (char*) mmap
(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

NULL addr : the kernel chooses the mapping address
PROT_READ | PROT_WRITE : RW protection

no MAP_ANONYMOUS flag : file-backed mapping
MAP_SHARED : shared mapping across related processes

fd returned by open("/dev/zero", O0_RDWR, 0)
backed file : /dev/zero

@ offset : 0

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 23 /51

Example | (3) anonymous mapping

anonymous mapping call example

anon = (char*) mmap
(NULL, 4096, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0);

@ NULL addr : the kernel chooses the mapping address
o PROT_READ|PROT_WRITE : RW protection

e with MAP_ANONYMOUS flag : anonymous mapping

@ MAP_SHARED : shared mapping across related processes
@ fd=-1: no backed file

@ offset : 0

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 24 /51

Example | (4) arguments example

mmap system call example

void *mmap
(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

anon = (char*) mmap
(NULL, 4096, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0);
zero = (char*) mmap

(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

// addr, length, prot, flag, fd, offset

fd = open("/dev/zero", O_RDWR, 0));

@ anon : anonymously mapped, RW, 4096 bytes area
@ zero : file-backed mapped, RW, 4096 bytes area

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

Example code | part (1)

mmap system call example

const char stri[] = "string 1";
const char str2[] = "string 2";
pid_t parpid = getpid(), childpid;
int fd = -1;

char *anon, *zero;

if ((fd = open("/dev/zero", O_RDWR, 0)) == -1) err(1, "open");

(char*)mmap

(NULL, 4096, PROT_READ|PROT_WRITE, MAP_ANON|MAP_SHARED, -1, 0);
zero = (char*)mmap

(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

anon

if (anon == MAP_FAILED || zero == MAP_FAILED)errx(1l, "either mmap");

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

Example code | part (2)

mmap system call example

strcpy(anon, stril);
strcpy(zero, strl);

printf ("PID %d:\tanonymous %s, O-backed %s\n", parpid, anon, zero);

e write strl ("string 1") to anon

e write str2 ("string 2") to zero

@ this example shows how an mmap of /dev/zero is equivalent
to using anonymous memory not connected to any file.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 27 /51

Example code | part (3)

mmap system call example

switch ((childpid = fork())) {

case -1:
err(1, "fork");
/* NOTREACHED */

case O:
childpid = getpid();
printf ("PID %d:\tanonymous %s, O-backed %s\n", childpid, anon, zero);
sleep(3);

printf ("PID %d:\tanonymous %s, O-backed %s\n", childpid, anon, zero);
munmap (anon, 4096) ;

munmap (zero, 4096) ;

close(£fd);

return EXIT_SUCCESS;

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 28 /51

Example code | part (4)

mmap em call example

sleep(2);
strcpy(anon, str2);
strcpy(zero, str2);

printf ("PID %d:\tanonymous %s, O-backed %s\n", parpid, anon, zero);
munmap (anon, 4096) ;

munmap (zero, 4096);

close(fd);

return EXIT_SUCCESS;

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 29 /51

Example code | output

mmap system call example

PID 22475: anonymous string 1, zero-backed string 1
PID 22476: anonymous string 1, zero-backed string 1
PID 22475: anonymous string 2, zero-backed string 2
PID 22476: anonymous string 2, zero-backed string 2

parent: printf-1 sleep(2) printf-2
child: printf-1 sleep(3) printf-2

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

TOC: mmap example Il

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 31/51

Example Il (1) code skeleton

mmap code skeleton

fd = open(argv[1], O_RDONLY); // argv[1] : file name
offset = atoi(argv[2]); // argv[2] : offset
length = atoi(argv[3]); // argv[3] : length

length = sb.st_size - offset;

addr = mmap(NULL, length + offset - pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);

s = write(STDOUT_FILENO, addr + offset - pa_offset, length);

https://en.wikipedia.org/wiki/Mmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 32/51

Example Il (2) stat.h

structure stat in

dev_t st_dev
ino_t st_ino
mode_t st_mode
nlink_t st_nlink
uid_t st_uid
gid_t st_gid
dev_t st_rdev
off_t st_size
time_t st_atime
time_t st_mtime
time_t st_ctime

blksize_t st_blksize

blkcnt_t st_blocks

sys/stat.h

ID of device containing file

file serial number

mode of file (see below)

number of links to the file

user ID of file

group ID of file

device ID (if file is character or block special)
file size in bytes (if file is a regular file)
time of last access

time of last data modification

time of last status change

a filesystem-specific preferred I/0 block size for
this object. In some filesystem types, this may
vary from file to file

number of blocks allocated for this object

https://pubs.opengroup.

org/onlinepubs/007908799/xsh/sysstat.h.html

Young W. Lim

3. User Space Allocation 2021-09-11 Sat

33/51

Example Il (3) sb

sb variable

#include <sys/stat.h>

struct stat sb;
if (fstat(fd, &sb) == -1) /* To obtain file size */
if (offset >= sb.st_size) {

if (offset + length > sb.st_size)
length = sb.st_size - offset;

length = sb.st_size - offset;

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 34 /51

Example Il (4) fstat ()

@ int fstat(int fildes, struct stat *buf);

@ The fstat () function obtains information about an open file
associated with the file descriptor fildes,
and writes it to the area pointed to by buf.

https://pubs.opengroup.org/onlinepubs/007908799/xsh/fstat.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 35/51

Example code Il part 1

mmap code part 1

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define handle_error(msg) \

do { perror(msg); exit(EXIT_FAILURE); } while (0)

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 36 /51

Example code Il part 2

mmap code part
int
main(int argc, char *argv[])
{
char *addr;
int fd;
struct stat sb;
off_t offset, pa_offset;
size_t length;
ssize_t s;
if (argc < 3 || argc > 4) {
fprintf(stderr, "Y%s file offset [length]\n", argv[0]);
exit (EXIT_FAILURE) ;

}
fd = open(argv[1], O_RDONLY);
if (fd == -1)

handle_error("open") ;

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

Example code Il part 3

mmap code part 3

if (fstat(fd, &sb) == -1) /* To obtain file size */
handle_error("fstat");
offset = atoi(argv[2]);
pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1);
/* offset for mmap() must be page aligned */
if (offset >= sb.st_size) {
fprintf (stderr, "offset is past end of file\n");
exit (EXIT_FAILURE);
}
if (argec == 4) {
length = atoi(argv[3]);
if (offset + length > sb.st_size)
length = sb.st_size - offset;
/* Canaqt display bytes past end of file */
} else { /* No length arg ==> display to end of file */
length = sb.st_size - offset;
}

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

Example code Il part 4

mmap code part 4

addr = mmap(NULL, length + offset - pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);

if (addr == MAP_FAILED)

handle_error ("mmap") ;
s = write(STDOUT_FILENO, addr + offset - pa_offset, length);
if (s != length) {

if (s == -1)

handle_error("write");

fprintf (stderr, "partial write");

exit (EXIT_FAILURE);
}
exit (EXIT_SUCCESS) ;

}

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 39 /51

Example code Il part 5

mmap code part 1

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define handle_error(msg) \

do { perror(msg); exit(EXIT_FAILURE); } while (0)

https://linux.die.net/man/2/munmap

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 40 /51

Memory layout of C programs

| | command-line arg’s
| | and environ var’s

| stack

| |
Inaaaas |

| heap

[—mmmmm - J6600600006006000000600

| uninitialized data | initialized to zero

| bss | by exec

R e T P loacoocacnacncosacaacac <- program break
| initialized data | read from

| data | program file

R e T T | Dby exec

| |

| text |

https://wuw.geeksforgeeks.org/memory-layout-of-c-program/
Young W. Lim 3. User Space Allocation 2021-09-11 Sat 41 /51

brk() / sbrk() (1) program break

@ brk() and sbrk() change the location of the program break,
which defines the end of the process's data segment

@ the program break is the first location
after the end of the uninitialized data segment

@ increasing the program break has the effect of
allocating memory to the process;

@ decreasing the program break deallocates memory.

https://man7.org/linux/man-pages/man2/brk.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 42 /51

brk() / sbrk() (2) setting / increasing the program break

@ brk() sets the top of the program break

o this is the top of the data segment
but inspecton of kernel/sys.c shows
it separates from the data segment
e this in effect increases the size of the heap

@ sbrk() increases the program break
rather than setting it directly

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 43 /51

brk() / sbrk() (3) lazy allocation

lazy allocation

see mm/mmap . ¢ for do_brk ()

do_brk() is implemented similar to mmap ()
modify the page tables for the new area
wait for the page fault

optionally, do_brk() can pre-fault the new area
and allocate it
see mlock(2) to control this behavior

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 44 /51

brk () system call (4) brk() synopsys

brk system call

#include <unistd.h>

int brk(void *addr);

@ brk() sets the end of the data segment
to the value specified by addr,

o when that value is reasonable,
the system has enough memory,
and the process does not exceed
its maximum data size

https://man7.org/linux/man-pages/man2/brk.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat

sbrk () system call (5) sbrk() synopsys

sbrk system call

#include <unistd.h>

void *sbrk(intptr_t increment) ;

@ sbrk() increments the program's data space
by increment bytes.
e calling sbrk() with an increment of 0
can be used to find the current location
of the program break

https://man7.org/linux/man-pages/man2/brk.2.html

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 46 /51

brk() / sbrk() examples (1)

@ You can use brk and sbrk yourself
to avoid the malloc overhead

@ cannot be easily used with malloc
@ cannot free anything
@ should avoid any library calls

which may use malloc internally.

e strlen is probably safe
o fopen probably isn't

https://stackoverflow.com/questions/6988487/what-does-the-brk-system-call-do

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 47 /51

brk() / sbrk() examples (2)

my allocate

void *myallocate(int n){
return sbrk(n);

}

o Call sbrk just like you would call malloc.
it returns a pointer to the current break
and increments the break by that amount.

@ malloc() and calloc() will use
either brk() or mmap ()
depending on the requested allocation size

https://stackoverflow.com/questions/6988487/what-does-the-brk-system-call-do

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 48 /51

brk() / sbrk() examples (3)

init and reset memory pool

void *memorypool;

void initmemorypool(void){
memorypool = sbrk(0);
}

void resetmemorypool (void){
brk (memorypool) ;

}

e frist, save the current break : memorypool = sbrk(0)
@ then, use allocate space : addr = myallocate(n)

e finally, rewinding call brk (memorypool)

https://stackoverflow.com/questions/6988487/what-does-the-brk-system-call-do

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 49 /51

High level implementation

e small allocations use brk ()

o large allocaion use mmap ()

@ see mallopt(3) and the M_MMAP_THRESHOD parameter
to control this behavio

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 50 /51

@ Stack expansion

o if a process accesses memory beyond its stack,
the CPU will trigger a page fault

@ the page fault handler detects
the address is just beyond the stack, and
allocates a new page to extend the stack

@ the new page will not be physically contiguous
with the rest of the stack

@ see __do_page_fault() in /arch/arm/mm/fault.c

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim 3. User Space Allocation 2021-09-11 Sat 51 /51

	Based on
	mmap system call
	mmap examples I
	mmap examples II
	brk() and sbrk() system calls

