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sin(t), Asin(t)

@ sin(t)
o not random process.

o x(t) = Asin(t)
e can be a random process if A is a random variable
o However, x(t) is not stationary, but it is cyclostationary,
e its statistical properties vary periodically.

https:/ /dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process
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Asin(t+¢)

e x(t)=Asin(t+¢)

o the x(t) process is stationary
because of the added random phase

o the random phase ¢ € [0,27] is
a uniformly distributed random variable
which is independent of A.

e its statistical properties are independent of t,
and hence, the process is stationary.

https:/ /dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process
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Signals in an oscilloscope

When analyzing a signal with an oscilloscope,
it can be observed that

the signal's amplitude spectrum
does not vary over moving windows

so a sinusoidal wave is sort of stationary in frequency.
Additionally, the signal is itself stationary in envelope

(modulus 1 for the analytic version of the signal).

https: / /dsp.stackexchange.com/questions/32000/why-is-sint-a-stationary-process
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Window function (1)

In signal processing and statistics, a window function
is a mathematical function that is

zero-valued outside of some chosen interval
normally symmetric around the middle of the interval

usually near a maximum in the middle

usually tapering away from the middle.

https:/ /en.wikipedia.org/wiki/Window function
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Window function (2)

when another function or waveform is
"multiplied" by a window function,

the product is also zero-valued outside the interval:
all that is left is the part where they overlap,
the "view through the window".

https://en.wikipedia.org/wiki/Window_ function

Young W Lim Stationary Random Processes - Examples



Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Envelope

@ the envelope of an oscillating signal is
a smooth curve outlining its extremes.

@ the envelope thus generalizes
the concept of a constant amplitude
into an instantaneous amplitude.

@ a modulated sine wave varying
between an upper envelope and a lower envelope.

e the envelope function may be a function
of time, space, angle, or indeed of any variable

https:/ /en.wikipedia.org/wiki/Envelope (waves)
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Random Variable Definition

A random variable

a real function over a sample space S = {5,5,53,...,5,}
— X(s)
<= X(5)

a . a capital letter X
a particular value : a lowercase letter x

a sample space S = {s1,5,5,...,5,}
an element of S :
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Random Variable Example

X( ):Xl — X1
X( ):X2 — X0
X(sn) = xn — X,

ceey Sn}
s Xn}

a sample space
a random variable
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Random Process (1)

A random process

a function of both time tand outcome
X(t,6)
assigning a time function to every outcome
— x;(t)

where x;(1) = x(t.6))

the family of such time functions
is called a
and denoted by X(t,0)
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Random Process (2)

A random process

a random process X(t,0)
assigns a time function for a every outcome

a short notation
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Ensemble of time functions

A random process X(t,6) represents
a family or ensemble of time functions

X(t,61) = x(t) — x1(t) = cos(@t + )

X(t,62) = xo(t) — xo(t) = cos(wt )

X(t,65) = xn(t) — x,(t) = cos(wt+0,,)

S =/{ , , R, }  asample space
X(t) = {xa(t), (1), xs(t), ... ,x.(t)} arandom process
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Random Phase Oscillator P.roblem defl.nltl_on .
First order distribution

Second order distribution
Mean and variance

A sample function x(t,0)

A random process X(t,0) represents
a family or ensemble of time functions

— x(t,0) = cos(wt+ 0)

x(t,0) represents
@ a sample function

@ an ensemble member

@ a realization of the process

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Random process X(t,0)

A random process X(t,0) represents
a family or ensemble of time functions

— x(t,0) = cos(@t+ )
x(t) = X(t,0)

X(t,0) becomes
@ a single time function x(t,0)

@ when t is a variable and 0 is fixed at an outcome

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Random variables with time

a random process X(t,s) represents a single time function
when 1 is a variable and s is fixed at an outcome

a random process X(t,s) represents a single random variable
when both ¢ and s are fixed at a time and an outcome, respectively

Xi =X(ti,s) = X(t;) random variable

X(t,s) = X(t) random process
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Random phase in X(t) = cos(wt + ©)

Consider the output of a sinusoidal oscillator
that has a random phase and an amplitude of the form:

X(t) = cos(wt+O)

where the random variable © ~ U([0,27])

to specify the explicit dependence
on the underlying sample space S
the oscillator output can be written as

x(t,0) = cos(wt + ©)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Random variable X;(0)

Consider the random variable

X(t,0) = cos(wt+0)

where the time t is fixed
In other words,

X:(0) = cos(wt+ 0)

where 6y = @t is fixed (a non-random quantity)
thus the time t is fixed

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Values of a time function

Consider the random variable for the fixed time t
X:(0) = cos(wt+ 0)

if the sample value © as well as the time t is fixed,
then the values of the time function

x1 = x(t1) = cos(wt; + )
x2 = x(tp) = cos(@wtr + )
where x is the time function for a fixed outcome ' and

let x; denotes the value of the time function x at times t;
(here x; is not a sample function)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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0 Random Phase Oscillator

@ First order distribution
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Random Phase Oscillator First order distribution

Second order distribution
Mean and variance

fx(x) of X(t) = cos(wt+ ©)

» Uniform Random Variable ©
o Random Process X(t) = cos(wt + O)

o First order distribution

fx(x) = L

V11— x2’

x| <1

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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first order distribution

To get the first order distribution of the random process
X(t) = cos(wt+O)

consider the first order distribution of the random variable
X¢(©) = cos(6p + ©)

where 6y = @t is fixed (a non-random quantity)
fx(x) can be obtained via the derivative method

d de
EFX(X)—fG(B)'E
()= ——— x| <1

X nv1—x2’

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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fx(x) of X(t) = cos(wt+ ©)

The first order distribution of the process X(t) = cos(wt+ ©)

1
fx(X): - ’X’<1

1—x2’

@ dependent only on the set of values x
that the process X(t) takes

@ independent of

o the particular sampling instant ¢t
e the constant phase offset 6, = ot

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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random variable ©

Let © be a uniform random variable on [0,27], then

Let
Xt(©) = cos(6p + ©)

be the random variable describing x in terms of ©.

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Fx(x) = Fo(61) — Fo(62)

Fx(x) = P(X < x)
= P(cos(wt+©) < x)

=P (cosfl(x) <ot+O<2m— cosfl(x))

=P (cosfl(x) @t <0< 21— cos}(x)— wt)

=P (e < 27— cos 1 (x) — wt) .y (e < cos H(x)— a)t)
= Fo (27: —cos~H(x) - mt) ~Fo (cos—l(x) - wt)

= Fo (61) — Fo (62)

Random variable X, a particular value x

Random variable ©, particular values 6; and 6>
https: //math.stackexchange.com/questions /3456122 /probability-density-function-

of-harmonic-oscillation
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Chain rule

The chain rule

d 0

Fx() = 0 Fo(0) %

Random variable X, a particular value x

Random variable ©, a particular value 6

d d 0 1
4 Fo(6) = fo(6) 5 (o) =55
d d do do 1 do
dXFX(X) Fe( ) f@(e)'gzga

https: //math.stackexchange.com/questions /3456122 /probability-density-function-

of-harmonic-oscillation
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derivative of Fx(x)

Differentiating both sides, we get:

%FX(X) = % {F@ (277:—c0571(x) - a)t) - Fo (cosfl(x) — (ut)}

dde Fo (27rfcos l(X)f(Dt> di)l( (2717*C0571(X)*(*’t>

dd6 Fo (cos (x)— a)t) % (cosfl(x) - a)t)

note
_ d@l d
= 2 — 1 — —_— = -1
0, T—cos ~(x)— ot o o cos™ ~(x)
do d
— oLy _ 22 _ 19 o5t
6> =cos " (x) — ot o + I cos™ ~(x)

https: //math.stackexchange.com/questions /3456122 /probability-density-function-

of-harmonic-oscillation
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fx(x) of X(t) = cos(wt+ ©)

Xt(©) = cos(wt+ O)

cos 1(x) < ot +© < 2w —cos 1(x)

Fx(x) = Fe (27: —cos 1(x)— a)t) —Fo (cos_l(x) — a)t)

using the chain rule
d d do 1 do

axx) = deFe(e)f fo(0) 3 = 2n ax

fx(x)="fo <27tfcos_1(x) — a)t> % <7cos_1(x)>
—fo <C°571(X) - (Dt) dix (cos’l(x)>

https://math.stackexchange.com/questions/3456122 /probability-density-function-

of-harmonic-oscillation
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fx(x) of X(t) = cos(wt+ ©)

fx(x)="fo (27L'fcos_1(x) — wt> % <7cos_1(x)>
—fo (Cosil(x) - (Dt) d%( (cos’l(x)>

Now, since fo(6) = 2

fx (x) ( 11X2)
1

\/1—x

https://math.stackexchange.com/questions /3456122 /probability-density-function-

and L cos7I(x)=— we have:

of-harmonic-oscillation
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fx(x) of X(t) = cos(wt+©) (10)

Consider the output of a sinusoidal oscillator
that has a random phase and an amplitude of the form:
X(t) = cos(wt+0O)

where © is a uniform random variable on [0,27]
then the first order pdf of X(t) is

1
Tv1—x2’

Note that the probability is unaffected by angular velocity
and initial phase (o, 6p), which is, intuitively, expected.

Fe(x) = x€(~1,1)

https://math.stackexchange.com/questions/3456122 /probability-density-function-

of-harmonic-oscillation
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Random Phase Oscillator First order distribution

Second order distribution
Mean and variance

fx(x) of X =cos(wT +¢) (1)

o Uniform Random Variable T
o Random Variable X = cos(@ T + ¢)

@ First order distribution
1

fx(x) = Yk

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

x| <1
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fx(x) of X =cos(wT +¢) (2)

Let T be a uniform random variable on [O,%’T
that describes time. Then

where f is the oscilation's frequency. Now, let:

X =cos(oT +¢)

be the random variable describing x in terms of T.
it is not a time function

X(t) #cos(®@T + ¢)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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fx(x) of X =cos(wT +¢) (3)

Fx(x) =P(X <x)
= P(cos(o T + ¢) < x)

=P (cosfl(x) <oT+¢ < 27r—cosfl(x)>
_ P(cos’l(x)—q) T< 27r—cos*1(x)—¢)

[ (0]
ZP(TSW)_P(TSW)
—Fr (W)_FT <cosfl(%)

= Fr(t1) - Fr(t2)
Random variable X, a particular value x

Random variable T, particular values t; and t»
https://math.stackexchange.com/questions/3456122 /probability-density-function-

of-harmonic-oscillation
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fx(x) of X(t) =cos(oT +¢) (4)

The chain rule
d d dt
EFT(t) = ﬁFe(e)'a
Random variable T, a particular value t

Random variable ©, a particular value 6

d d /o [0)
ZFr(t) = f(t 2 (=2
g (0 =fr(t) dt(2ﬂ: ) 2r
d d dt dt o dt
L FRr(t)= S Fr(t) = = fr(t) - = 22
gi T =g (0 =) =0 g

https://math.stackexchange.com/questions/3456122 /probability-density-function-

of-harmonic-oscillation
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fx(x) of X(t) =cos(wT +¢) (5)

Differentiating both sides, we get:

in(x) = d% {FT <—27t7cos;)1(x) 7¢) —Fr (7&5_1((;) — ¢)}

dx
—iF 21 —cos L(x)—¢ d T —cos H(x)— ¢
T odt T( ® ) dx ( o )
iF cos H(x)— ¢ d cos H(x)— ¢
Tdr T ( 0} ) dx ( 0} )
note

. 27 —cos L(x) — ¢ dty —cos 1(x)

1= [2) dx )

b cos H(x)— o dty +cos™1(x)

2= [2) dx [2)

https://math.stackexchange.com/questions/3456122 /probability-density-function-

of-harmonic-oscillation
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fx(x) of X(t) =cos(wT + ¢) (6)

X(t)=cos(®@T +¢)
0s 1 (x) <oT+¢ <21m—cos 1(x)

Fx(x) = Fr (W) Fy (COS*(%)

using the chain rule

d d o dt
B ==
g 7= T() =fr(t): dx 27 dx

fX(x):fT(W) d%( cosw(x))
_fr (Cosflc(:)—q)) dix (cos;)l(x))

https://math.stackexchange.com/questions/3456122 /probability-density-function-

of-harmonic-oscillation
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fx(x) of X =cos(wT +¢) (7)

Differentiating both sides, we get:

fX(x):fT<W) dilx( Cosw(x))

_fT<C°5_1((DX)*¢) di)/((cos:(x)>
2

d -1/ 1 .
~and J cos " (x) = i e have:

1

\/1—X

https: //math.stackexchange.com/questions /3456122 /probability-density-function-

Now, since fr(t) =

of-harmonic-oscillation
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fx(x) of X =cos(wT +¢) (8)

1
V12 —x2’

the probability is unaffected by angular velocity (@)
and initial phase (@), which is, intuitively, expected.

fc(x) = xe(~1,1)

https://math.stackexchange.com/questions/3456122 /probability-density-function-

of-harmonic-oscillation
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Outline

0 Random Phase Oscillator

@ Second order distribution
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Using a conditional distribution

to get the second-order distribution f (x1,x2)
use the conditional distribution f (x1|x2)
as in

f (X1,X2) =f (Xg) - f (X1’X2)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Conditional distribution fx () x(t,)(x1/x2)

to find the conditional distribution f (x1|x2)
consider the following problem :

given that xo = x(t2) = cos(wtr + 6)
determine 6, and find x; = x(t1) = cos(@t; + )

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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0 in terms of xp and t»

‘given xp = x(t2) = cos(wtr + 0), determine O:

this can happen only when :

(ota+0) = +cos (x2)
(0ty+6) = —cos }(x2) + 27

thus, the sample value can be

0 = +cos 1(x2) — @ty

0 = —cos_l(x2) — 0ty +27

where 0 < cos !(x) <mand 0< 6 <21

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Young W Lim Stationary Random Processes - Examples



Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

X1 can be xj1 or x1o

given that xo = x(t2) = cos(wt, + 6):
determine 6, and find x; = x(t1) = cos(@t; + 0) :

9= +<COS 1(X2)*a)t2)
— (cos(x0) + 0t2) +27

then x; = x(t1) = cos(@wt; + 0) can have only two values

x(t1) = cos (@t + (cos *(xo) — 0tr)) = x11
V7 cos (0t (cos 10 +082)) = 12

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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X1 can be xq1 or x1o with an equal probability

given that x; = x(tz) = cos(wt, + 0)
determine 0, and find x; = x(t1) = cos(®@t; + 6) :

then x; can have only two values x11 and x1»
with an equal probability 0.5

f (X1|X2) = (0.5 5(X1 —X11) +0.5 5(X1 —X12))

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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fx ()| X()(x1|x2) conditional distribution (1)

the conditional distribution 1 (x1]x2)
f (X1|X2) = (0.5 5(X1 —X11) +0.5 3(X1 —X12))

O(x(t1) —x11) becomes one,
when x; = x(t1) is equal to x11 = cos(wt; + 61)
O(x(t1) —x12) becomes one,
when x; = x(t1) is equal to x1» = cos(wt; + 62)

if the value x» of x(t2) at ty is given
then the value x; of x(t1) at t; can only be
either x11 or x1» with the equal probability of 0.5

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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fx ()| X()(x1|Xx2) conditional distribution (2)

the conditional distribution of x(t1) = x; given that x(t2) = xa:

)
f (X1’X2) = (0.5 5(X1 1) +0.5 5(X1 —X12))
=0.5 8 (x1 —cos (@t1 + (cos *(x0) — 0tr)))
(

+0.5 5<x1—cos wt; — (cos XQ)Jra)tz)))

f (X(tl)‘x(tz)) = (0.5 6(X(t1)7X11)+0.5 S(X(t]_)fxlz))
=056 (x(tl) —cos (@ty + (cos *(x(t2)) — Cl)t2))>

41058 (X(tl) — cos (ot — (cos *(x(t2)) + wtz))>

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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fx ()| X()(x1|Xx2) conditional distribution (3)

f (X1’X2) = (0.5 5(X1 —X11) +0.5 5(X1 —X12))

@ for 01, xp = cos(@ta + 61), and x11 = cos(wt; + 61)
for a given 6 and t»,
only the time difference t, — t; determines x11

@ for 0, xp = cos(@ta + 6>), and x12 = cos(wt; + 62)

for a given 6 and t»,
only the time difference t, — t; determines xi»

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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fx ()X () (x1|Xx2) conditional distribution (4)

f (x1]x2) = (0.5 6(x1 — x11) + 0.5 8(x1 — x12))

@ determining 61, 6> is independent of
the particular sampling instant t»

@ for a given x(t2), the value x(t1)
depends only on to —t1
o for the 6; case, x11 depends only on t, — t;
o for the 6> case, x;» depends only on t, — t;

@ the conditional distribution f (x1]x2)
depends only on ty — t1

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

First order distribution fx(t (Xz) (1)

the first order distribution fx(x) of x; = x(t) = cos(wt, + 6)

foo )= —
2)— ——  —
2y /1 —x3

1

o (rlee)) = 5

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

First order distribution fx(t (Xz) (2)

the first order distribution of xo = x(t2) = cos(wt> + 6):
1

21\ /1—x3

if t and x(t2) are given, f. . (x2) is

fo )=

@ dependent only on the set of values x(t)

X2 € [—1,+1]
@ independent of

e the particular sampling instant t
o the constant phase offset ot

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

First order distribution fx(t (Xz) €)

the first order distribution of x(t;) = xp = cos(®wty + 0):

fo (x(t2)) =

o it is seemed that the first order distribution
is dependent on the sampling instant t;.

@ but the statistical property of x(t2)
are the same regardless of t,

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Second order distribution using fx(,)(x2)

The second order pdf can thus be written as

f (x1,x2) =F. 1 (x2)f (x1]x2)

=f . (x) (;5(X1—X11)+;5(X1—X12)>

f (x(t1),x(t2)) = f (o (x(t2))F (x(t1)Ix(t2))
—f (x(tz))(%5(X(t1)—><11)+%E(X(tl)—x12)>

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Substitute fy(,,)(x(t2))

f (Xl,XQ) = f (Xg)f (X1|X2)
1
=———— §(x3—cos [a)tl + (cosfl(xQ) - a)tg)]
27y /1 — x2 ( )
1
+——r— & (x1—cos [a)tl - (cos*l(xQ) + a)tg)]
2w, /1 —x22 < )
f (x(t1),x(t2)) = £ (x(t2)) (x(t1)[x(t2))
= 5 (x(t) —cos [0t + (cos }(x(t2) ~ 0ta)] )
= 27[\/% X\ 11 Ccos 1 cos X\ T2 2
1

5 (X(tl) — cos [ty — (cos L(x(t2)) + th)})

+27‘C\/ 1 —X2(t2)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

the second order distribution fx (1) x(¢,)(x1,X2)

to get the second-order distribution f (x1,%2)
use the conditional distribution f (x1]x2)
as in
f (x1,x2)="F. . (x)-f (x1]x2)
@ the conditional distribution f (x1]x2)

depends only on tp —t1

@ f. (. (x2) is independent of
the particular sampling instant t»

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Second-Order Stationary Process (1)

Random Phase Oscillator

fx(x1,x0; t1, t2)
if X(t) is to be a second-order stationary

fx(x1,x2;t1,t2) = fx(x1,x2; t1 + A, to + A)
must be true for any time 4, 1

and any real number

the second order density function
does not change with a shift in time origin
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Second-Order Stationary Process (2)

fx (x1,x2; t1, t2)
@ fx(xi1,x0;t1,1t2) is independent of t;and 1,
the second order density function
does not change with a shift in time origin

@ then the autocorrelation function
a function only of the time difference
between two time instants
and not absolute time

Rxx(t,t+ 1) = E[X()X(" + )] = Rxx(7)
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

fX(tl)ﬂX(tZ)(X]_,XQ) second order distribution

e given tp and x(t2) e given tp+ 7 and x(t2 +7)
o determine 0 in @ determine 0 in

x(t2) = cos(wtp + 0) x(ta+ 1) = cos(@(ta+7)+ 0)
@ given t; and find x(t1) @ given t; + 7 and find x(t; + 1)

fx (x1,x2;t1,t2) = fx(x1,x0; t1 + A, tr + A)

is true for any time t1, t» and any real number
the second order density function
does not change with a shift in time origin

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

depend only on t, — t;

let © have a uniform distribution on (0,27]
and define the time series {X(t)} by
X(t)=cos(wt+©) forteR

then {X(t)} is strictly stationary
since [(wt+©) mod 2] follows
the same uniform distribution as © for any t.

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

0 Random Phase Oscillator

@ Mean and variance
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Random variables of a random process X(t, )

e X(t1,0) is a random variable
that represents the set of samples
across the ensemble at time t;

@ we can make use of all of the concepts
that have been developed for random variables

https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Moments of a random process X(t,0)

e if it has a probability density functionfx(x; t1)
then the moments are

oo

m,,(tl):E[X”(tl)]:/ " (1) dx

—o0

@ we need the notation fx(x;t1) because it is very possible
that the probability density will depend upon
the time the samples are taken.

https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Mean value of a random process X(t,0)

@ The mean value is ux = my, which can be a function of time

tx = mi(t) = E[X(8)] :/ i (: t1)dx
where
a probability density function is fx(x;t1)
the moments are

mo(t1) = EIX(e)] = [ +"fx(i 1)

—oo

https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Central moments of a random process X(t, 6)

@ The central moments are
E[(X(tl)—ux(tl))"]:/( — px(t1))" Fx (o t1)dx

where

ma(t1) = EX"(t)] = [ <"f(itn)ax

—oo

= mi (1) = EIX()] = [ <)

—oo

https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Variance of a random process X(t,0)

@ The variance is

0f = E[(X(t) ~ ix(0))"] = [ (= x(0))” (s t)

where
EIX(e) = ux(t0)) ] = [ (<= px(80))" i 1)

https://www.cis.rit.edu/class/simg713/notes/chap7-random-process.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Example: X(t) = cos(wt+O)

e the random process X(t)
o the first-order moment px

o the second-order central moment o3

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Mean of the process X(t) = cos(@wt+0O) (1)

The mean of the process X(t) = cos(wt+ ©) is obtained
by taking the expectation operator Eg [e]
with respect to the random parameter © on both sides

X(t,0) = cos(wt+O)
Eo[X(t,0)] = Es[cos(wt + O)]

note that the expectation integral is a linear operation:

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Mean of the process X(t) = cos(@t+O) (2)

Ux(t) = Eo [X(t,0)] = Es[cos(wt+ O)]
= Eg[cos(@t)cos(©) —sin(wt)sin(O)]
= Eo[cos(©)]cos(@t) — Eo[sin(©)]sin(@t)

Since the random parameter © is uniformly distributed

tx(t) = Eo[cos(©)] cos(wt) — Es[sin(©)]sin(wt)
= cos(t) <217t/02ﬂcos(9)d9> —sin(wt) (2171 /oznsin(é))d9>

=0

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Variance of the process X(t) = cos(@t+ O)

The variance of the random process X(t) = cos(@t+ ©O)
ox(t) = Es[(X(t,0) — ux)’] = Eo [[X(t,0)]] — ux

Substituting the mean of the process (ux = 0)
2 1 T,
o2(t) =  — / cos?(@t +6)do
2w ) Jo

B (1) /2” [1+cos(2a)t+26) 46
2w ) Jo 2

1

T2

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Average power of the process X(t) = cos(@t+O)

the average power of the random sinusoidal signal
X(t) = cos(wt+©O)
Py = o} =1

the same as the average power of a sinusoid
whose phase is not random

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Correlation of the process X(t) = cos(wt + ©)

the correlation Rxx(t1,t?)
of random variables X(t1) and X(t2)

Rxx(t1,t2) = Eo[x(t1)x(t2)] = /()Mcos(a)tl +0)cos(wta+0)d6
_ ( L )/()2ﬂcos[a)(t1+t2)+29]d9

4

(4 [t

= <;> cos[o(t; — to)]

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf

Young W Lim Stationary Random Processes - Examples



Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Example: X(t) = cos(wt+O)

The covariance Cxx(t1,t2)
of random variables X(t1) and X(t2)

Cox (1, 1) = Rt 1) — i (#1)1x (1) = <;> cos|o(t1 — )]

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Example: X(t) = cos(wt+O)

The normalized correlation coefficient pxx(ti,t2)
of random variables X(t1) and X(t»)

cov(X,Y Cxx(t1,t
pxx(t1, t2) = \/Var(;)var)(y) B \/G)%(t(l)c)%()b)
Rox(t1, t2) — ix (1) x(t2)
\/(E[X2(t1)] —pz(t)) (E[X3(2)] - uz(t2)
() cos[o(ty — t2)]

= — = cos[w(t; — t2)]

2°2

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Example: X(t) = cos(wt+O)

the random process X(t) = cos(wt+©O)

@ the mean ux =0

o the variance o%(t) = %

we can see that mean and variance are shift-invariant
consequently the random process X(t) = cos(wt+ ©) is
first-order stationary

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Problem definition

First order distribution
Second order distribution
Mean and variance

Random Phase Oscillator

Example: X(t) = cos(wt+O)

The ACF (Auto-Correlation Function) and
other second-order statistics of the process are
dependent only on the variable T = t; — t».

The random process X(t) is therefore a WSS process also.
The ACF can then expressed in terms of the variable T =t; — t; as:

Rxx(t1,22) = (;) cos[o(t1 — 12)]
Rxx(7) = (;) cos(mT)

http://ece-research.unm.edu/bsanthan/ece541/examp.pdf
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Examples - A

Stationary Process Examples Eermpls - B

Outline

@ Stationary Process Examples
@ Examples - A
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Examples - A

Stationary Process Examples Eermpls - B

Example A.1: X(t) = cos(wt)

A white noise is not necessarily strictly stationary.

Let  be a random variable uniformly distributed
in the interval (0,27)

define the time series {X(t)}

X(t) =cos(wt) (t=1,2,...)

https://en.wikipedia.org/wiki/Stationary _process
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Examples - A

Stationary Process Examples Eermpls - B

Example A.1: X(t) = cos(wt)

Then

E[X(t) cos(tw)dw =0

Var(X

Cov/(x(t)

h
/ cos?(tw)dw =1/2
“5h

N N N
\"‘ :a"" :n\"‘

cos(tw)cos(sw)do =0 Vt#s

So {X(t)} is a white noise,
however it is not strictly stationary.

https://en.wikipedia.org/wiki/Stationary _process
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Examples - A

Stationary Process Examples Eermpls - B

Example A.2: X(t) = cos(t+ U)

a stationary process example
for which any single realisation has
an apparently noise-free structure,

Let U have a uniform distribution on (0,27x] and
define the time series {X(t)} by

X(t)=cos(t+U) forteR
then {X(t)} is strictly stationary (SSS).

https://en.wikipedia.org/wiki/Stationary _process
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Examples - A

Stationary Process Examples Eermpls - B

Example A.2: X(t) = cos(t+ U)

Show that X(t) is a WSS process.
We need to check two conditions:

,llx(t)zux for t e R

Rx(tl,tz):Rx(tl—tg) for ti,tp €R

https://www.probabilitycourse.com/chapter10/10 1 4 _stationary processes.php
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Examples - A

Stationary Process Examples Brenmes - B

Example A.2: X(t) = cos(t+ U)

px (t) = E[X(t)]
= E[cos(t+ U)]

1 2z
:E/o cos(t+ u) du
=0, forallteR.

https://www.probabilitycourse.com/chapter10/10 1 4 stationary processes.php
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Examples - A

Stationary Process Examples Brenmes - B

Example A.2: X(t) = cos(t+ U)

Rx(tl,tg) = E[X(tl)X(tg)]
= E[cos(t1 + U) cos(tr + U)]

1 1
=E [2 cos(t1 +tp+2U) + Ecos(tl - tz)}

=E Bcos(t1+t2+2U)] +E BCOS(H— tg)]

1

2r 1
= %/O cos(t; +tr+u) du+ 5cos(tl —t)

1 1
=0+ Ecos(tl —b) = Ecos(tl —t), forallt;,t, €R.

https://www.probabilitycourse.com/chapter10/10 1 4 stationary, pregesses.php
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Examples - A

Stationary Process Examples Brenmes - B

Example A.3: X(t) = accos(wt + O)

The random phase signal X(t) = acos(wt+ ©)
where © € U|[0,2n] is SSS

it is known that the first order pdf is
1
moy/1—(x/at)?’

which is independent of t, and is therefore stationary

- < x<+4o

fX(t)(X) =

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Examples - A

Stationary Process Examples Eermpls - B

Example A.3: X(t) = accos(wt + O)

To find the second order pdf,
note that if we are given the value of X(t) at one point, say t1,
there are (at most) two possible sample functions

o X(tl) = X1
e at t;, two sinusoid waves intersect with each other
] X(tg) = Xp1 OF X292

e at tp, two sinusoid waves do not intersect with each other
http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Examples - A

Stationary Process Examples Eermpls - B

Example A.3: X(t) = accos(wt + O)

The second order pdf can thus be written as
f (x1,x2) = fo 0 (x)f (x2x1)

1 1
=f (X]-) (26(X2_X21)+25(X2—X22)>
which depends only on t, —t1,

and thus the second order pdf is stationary

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Examples - A

Stationary Process Examples Eermpls - B

Example A.3: X(t) = accos(wt + O)

e if we know that X(t1) = x; and X(t2) = x2,
the sample path is totally determined
except when x; = xo =0,

@ when x; = x, =0,
two paths may be possible

@ thus all n-th order pdfs are stationary
http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Examples - A

Stationary Process Examples ESempls - B

Outline

@ Stationary Process Examples

@ Examples - B
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Examples - A

Stationary Process Examples ESempls - B

Example B.1: X(t)=Y

Let Y be any scalar random variable,
and define a time-series {X(t)}, by

X(t)=Y for all t.

Then {X(t)} is a stationary time series

o realisations consist of a series of constant values,

o a different constant value for each realisation.

https:/ /en.wikipedia.org/wiki/Stationary process
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Examples - A

Stationary Process Examples ESempls - B

Example B.1: X(t)=Y

X(t)=Y for all t.

X(t) is a first-order stationary
fx(x1;t1) = fx(x1;t1 + A) = const
X(t) is a second-order stationary
fx(x1,x2; t1, t2) = fx(x1,x2; t1 + A, 1o + AA) = const
X(t) is to be a Nth-order stationary
fx (1, o xns by i) =fx(xa, - o xps b+ A -+ ty+ /) = const

https://en.wikipedia.org/wiki/Stationary _process
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Examples - A

Stationary Process Examples ESempls - B

Example B.2: Z(t) = X(t)+ Y(t)

Let X(t) and Y(t) be
two jointly WSS random processes.

Consider the random process Z(t)

Z(t) = X(t)+ Y(t)

Show that Z(t) is WSS.

https: //www.probabilitycourse.com/chapter10/10 1 4 stationary processes.php
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Examples - A

Stationary Process Examples ESempls - B

Example B.2: Z(t) = X(t)+ Y(t)

Since X(t) and Y/(t) are jointly WSS, we conclude

Hx(t) = Hx
Hy() = Hy
Rx(t1,t2) = Rx(t1 — t2)
Ry (t1,t2) = Ry (t1 — )
Rxy (t1,t2) = Rxy(t1 — t2)

https://www.probabilitycourse.com /chapter10/10 1 4 stationary processes.php

Young W Lim Stationary Random Processes - Examples



Examples - A

Stationary Process Examples Sempls - B

Example B.2: Z(t) = X(t)+ Y(t)

Since X(t) and Y(t) are jointly WSS, we conclude

pz(t) = E[X(t)+ Y(1)]
= E[X(t)]+ E[Y(1)]
= Ux + HUy.

https://www.probabilitycourse.com /chapter10/10 1 4 stationary processes.php
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Examples - A

Stationary Process Examples ESempls - B

Example B.2: Z(t) = X(t)+ Y(t)

Since X(t) and Y(t) are jointly WSS, we conclude

Rz(t1,t2) = E [(X(t1) + Y(t1)) (X(t2) + Y(2))]
= E[X(t1)X(t2)] + E[X(t1) Y (t2)]
+E[Y(t)X(22)]E[Y (1) Y (22)]
= Rx(t1 —t2) + Rxy(t1 — t2)

+ Ryx(t1 — t2) + Ry (t1 — ).

https://www.probabilitycourse.com/chapter10/10 1 4 _stationary processes.php

Young W Lim Stationary Random Processes - Examples



Examples - A

Stationary Process Examples ESempls - B

Example B.3: X(t) = £sint,+cost

Let

: _ 1

+sint po=7

—sint p1:l

X(t)= 1

+cost pp=73

—cost p3:%

E[X(t)] =0

1
Rx(tl, 1.'2) = ECOS(tQ — tl)

thus X(t) is WSS

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Examples - A

Stationary Process Examples Sempls - B

Example B.3: X(t) = £sint,+cost

Let
: _ 1
+sint  po=73
: 1
—sint .
+cost pp=73
—cost p3:%

But X(0) and X(7) do not have the same pmf (different ranges),
so the first order pmf is not stationary, and the process is not SSS

http://isl.stanford.edu/~abbas/ee278/lect07.pdf
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Outline

© Cyclo-stationary Process Examples
@ Examples

Young W Lim Stationary Random Processes - Examples



Examples
Cyclo-stationary Process Examples

Stationary Process (1)

@ A stationary process is one
whose distribution does not change with time.

o Stationarity is a characteristic of a probability distribution.

e A random variable (a random process at a fixed time)
whose distribution does not change with time,
or is time-invariant, is referred to
as a stationary process.

https: //www.wavewalkerdsp.com/2022/04 /20 /cyclostationary-and-stationary-

processes-with-examples/
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Examples
Cyclo-stationary Process Examples

Stationary Process (1)

o Consider the probability distribution of flipping a coin.

@ The probability of the coin

e landing on heads is 50%
e landing on tails is 50%.

@ The probabilities are the same 100 years ago
as they are today and as they will be in 100 years.

https://www.wavewalkerdsp.com/2022/04 /20 /cyclostationary-and-stationary-

processes-with-examples/

Young W Lim Stationary Random Processes - Examples



Examples
Cyclo-stationary Process Examples

Stationary Process (3)

e Mathematically the probability distribution p.(x)
of flipping a coin is described by

pe(x) =

0.5, x=head
0.5, x=tail.

@ The variable x is the state of the coin (head or tail)

e The distribution p.(x) is time-invariant
because time does not factor into the distribution in any way.

@ The distribution p.(x) is stationary.

https://www.wavewalkerdsp.com/2022/04 /20 /cyclostationary-and-stationary-

processes-with-examples/
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Examples
Cyclo-stationary Process Examples

Cyclostationary Process (1)

@ A cyclostationary process is one
whose distribution is periodic in time.

o Cyclostationarity is a
characteristic of a probability distribution.

e A random variable (a random process at a fixed time)
whose distribution changes periodically with time,
or is perodically time-varying,
is referred to as a cyclostationary process.
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Cyclostationary Process (2)

@ Let's return to the example of flipping a coin
but with a caveat: the coin will only be flipped on Mondays
and not flipped all other days of the week.

@ However, the distribution is periodically time-varying
when focusing on each week day individually.

@ the distribution of the coin flip on Monday is defined as

0.5, x = heads

x|day = Monday) =
Pc,week/y(| y y) 0.5, x =tails.
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Cyclostationary Process (3)

o the distribution of the coin flip on Monday is defined as

0.5, x = heads

x|day = Monday) =
Pec,weekly (x|day ) 0.5, x =tails.

@ the distribution is stationary,
however it occurs every 7 days.
@ A cyclostationary process is one
whose distribution is stationary
but with a given period which in this case is 7 days.
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Cyclostationary Process (4)

o Continuing the example,
the coin flip distribution for Tuesday is defined by

Pe,weekly (X|day = Tuesday) = {1, x = not flipped.

@ Again the distribution is stationary
but with a period of every 7 days.

@ The distribution is the same for all other days of the week.
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Transforming Cyclostationary into Stationary (1)

@ A cyclostationary process can be transformed
into a stationary process
by averaging out the probabilities across time.
@ This results in distortion
because it does not retain the full information
about the nature of the cyclostationary process behind the
coin flips.
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Transforming Cyclostationary into Stationary (2)

o Each day of the week is equally likely, with probability
1/7 ~0.14.

@ The probability of the coin landing on heads or tails is still
50% but the coin is only flipped once on Mondays, therefore
there is a probability of 0.5-1/7 ~ 0.07 the coin landing on
heads and probability 0.5-1/7 ~ 0.07 landing on tails.

@ Since the coin is not flipped 6 out of the 7 days there is a
probability of 6/7 ~ 0.86 that occurring.
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Transforming Cyclostationary into Stationary (3)

@ The cyclostationary distribution is therefore

0.07, x = heads & day = Monday,
Pec,weekly(X,day) = ¢ 0.07, x = tails & day = Monday,
0.86, x = not flipped & day # Monday.

@ The transformed stationary distribution of the coin is written

as
0.07, x = heads,

pc,weekly(X) =<¢0.07, x= tails,
0.86, x = not flipped.
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Transforming Cyclostationary into Stationary (4)

@ The distribution (5) is stationary because there is no time
dependence as compared to (4) which is periodically
time-varying.

@ The periodically time-varying nature has been averaged out of
the cyclostationary distribution, transforming it into a
stationary distribution.

@ This results in a loss of information, or clarity, into the nature
of the cyclostationary process.
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