
Young Won Lim
7/7/18

Background – Expressions (1D)

Young Won Lim
7/7/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Background (1D)
Expressions 3 Young Won Lim

7/7/18

Guard operator

patterns are a way of

making sure a value conforms to some form

and deconstructing it

guards are a way of

testing whether some property of a value

(or several of them) are true or false.

http://learnyouahaskell.com/syntax-in-functions

Background (1D)
Expressions 4 Young Won Lim

7/7/18

while and let bindings

Where bindings are a syntactic construct

that let you bind to variables at the end of a function

and the whole function can see them, including all the guards.

Let bindings are expressions themselves,

let you bind to variables anywhere,

but are very local, so they don't span across guards.

Just like any construct in Haskell

that is used to bind values to names,

let bindings can be used for pattern matching.

http://learnyouahaskell.com/syntax-in-functions

Background (1D)
Expressions 5 Young Won Lim

7/7/18

while bindings

put the keyword where after the guards

and define several names or functions.

all the names are aligned at a single column.

These names are visible across the guards

and removes redundancy.

The names we define in the where section of a function

are only visible to that function,

the namespace of other functions are not contaminated.

where bindings aren't shared

across function bodies of different patterns.

If you want several patterns of one function

to access some shared name, you have to define it globally.

You can also use where bindings to pattern match!

http://learnyouahaskell.com/syntax-in-functions

Background (1D)
Expressions 6 Young Won Lim

7/7/18

let bindings

let <bindings> in <expression>

The names that you define in the let part

are accessible to the expression after the in part.

the names are also aligned in a single column

let puts the bindings first and

the expression that uses them later

whereas where is the other way around.

let bindings are expressions themselves.

where bindings are just syntactic constructs.

http://learnyouahaskell.com/syntax-in-functions

Background (1D)
Expressions 7 Young Won Lim

7/7/18

case expression

case expressions are, well, expressions,

much like if else expressions and let bindings.

Not only can we evaluate expressions

based on the possible cases of the value of a variable,

we can also do pattern matching

taking a variable,

pattern matching it,

evaluating pieces of code based on its value,

where have we heard this before?

pattern matching on parameters in function definitions!

Well, that's actually just syntactic sugar for case expressions.

http://learnyouahaskell.com/syntax-in-functions

Background (1D)
Expressions 8 Young Won Lim

7/7/18

guard as an expression

case () of guard as an expression

 _ | a >= x -> 1

 | a == b -> 333

 | otherwise -> 5

 | a >= x = 1 guard

 | a == b = 333

 | otherwise = 5

if | a >= x -> 1 multi-way if

| a == b -> 333

| otherwise -> 5

using the MultiWayIf extension

https://stackoverflow.com/questions/10370346/using-guards-in-let-in-expressions

Background (1D)
Expressions 9 Young Won Lim

7/7/18

Guard operator

f x

 | predicate1 = expression1

 | predicate2 = expression2

 | predicate3 = expression3

Examples)

absolute x = if (x<0) then (-x) else x

absolute x

 | x<0 = -x

 | otherwise = x

no equals sign on the first line of the function definition

but an equals sign after each guard.

https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27226

Background (1D)
Expressions 10 Young Won Lim

7/7/18

Guard operator – otherwise

The otherwise guard should always be last, catch all guard

it’s like the default in a C switch statement.

more readable than if/then/else

for more than two conditional cases

score :: Int -> String

score x

 | x > 90 = show (x) ++ ": A"

 | x > 80 = show (x) ++ ": B"

 | x > 70 = show (x) ++ ": C"

 | otherwise = show(x) ++ ": F"

https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27226

Background (1D)
Expressions 11 Young Won Lim

7/7/18

Guard operator – where

holeScore :: Int -> Int -> String

holeScore strokes par

 | strokes < par = show (par-strokes) ++ " under par"

 | strokes == par = "level par"

 | strokes > par = show(strokes-par) ++ " over par"

holeScore :: Int -> Int -> String

holeScore strokes par

 | score < 0 = show (abs score) ++ " under par"

 | score == 0 = "level par"

 | otherwise = show(score) ++ " over par"

 where score = strokes-par

https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27226

Background (1D)
Expressions 12 Young Won Lim

7/7/18

Case expression

data Pet = Cat | Dog | Fish

hello :: Pet -> String

hello x =

 case x of case x of

 Cat -> "meeow" pattern -> value

 Dog -> "woof" pattern -> value

 Fish -> "bubble" pattern -> value

https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27226

Background (1D)
Expressions 13 Young Won Lim

7/7/18

Case expression – a pattern having a variable

data Pet = Cat | Dog | Fish | Parrot String

hello :: Pet -> String

hello x =

 case x of

 Cat -> "meeow"

 Dog -> "woof"

 Fish -> "bubble"

 Parrot name -> "pretty" + name

hello (Parrot "polly")

"pretty polly"

https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27226

Background (1D)
Expressions 14 Young Won Lim

7/7/18

Case expression – a default pattern

data Pet = Cat | Dog | Fish | Parrot String

hello :: Pet -> String

hello x =

 case x of

 Parrot name -> "pretty " ++ name

 _ -> "grunt"

https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27226

Background (1D)
Expressions 15 Young Won Lim

7/7/18

Select expression

a function implemented in Haskell:

select :: a -> [(Bool, a)] -> a

select def = maybe def snd . List.find fst

 -- = fromMaybe def . lookup True

 -- = maybe def id . lookup True

select exDefault

 [(cond1, ex1),

 (cond2, ex2),

 (cond3, ex3)]

Unfortunately this function is not in the Prelude.

It is however in the utility-ht package.

https://wiki.haskell.org/Case

Background (1D)
Expressions 16 Young Won Lim

7/7/18

Advantages of let

P1 P2

f :: s -> (a,s)

f x = y

 where y = ... x ...

P2 will not work, because where refers to the pattern matching f =,

where no x is in scope.

with let, there is no problem.

P3 P4

f :: s -> (a,s)

f x =

 let y = ... x ...

 in y

https://wiki.haskell.org/Let_vs._Where

f :: State s a

f = State $ \x -> y

 where y = ... x ...

Using Control.Monad.State monad

f :: State s a

f = State $ \x ->

 let y = ... x ...

 in y

Background (1D)
Expressions 17 Young Won Lim

7/7/18

Advantages of while

Because "where" blocks are bound to a syntactic construct,

they can be used to share bindings between parts of a function

that are not syntactically expressions.

f x

 | cond1 x = a

 | cond2 x = g a

 | otherwise = f (h x a)

 where

 a = w x

these alternatives are arguably less readable

and hide the structure of the function more than

simply using where

https://wiki.haskell.org/Let_vs._Where

f x

 = let a = w x

 in case () of

 _ | cond1 x -> a

 | cond2 x -> g a

 | otherwise -> f (h x a)

f x =

 let a = w x

 in select (f (h x a))

 [(cond1 x, a),

 (cond2 x, g a)]

f x =

 let a = w x

 in if cond1 x

 then a

 else if cond2 x

 then g a

 else f (h x a)

a functional equivalent: a series of if-then-
else expressions:

an expression style

Background (1D)
Expressions 18 Young Won Lim

7/7/18

Lambda Lifting

let or where can often be implemented

using lambda lifting and let floating,

incurring at least the cost of introducing a new name.

f x

 | cond1 x = a

 | cond2 x = g a

 | otherwise = f (h x a)

 where

 a = w x

 a : a free variable a : an argument

The auxiliary definition can either be a top-level binding,

or included in f using let or where

https://wiki.haskell.org/Let_vs._Where

f x = f' (w x) x

f' a x

 | cond1 x = a

 | cond2 x = g a

 | otherwise = f (h x a)

lambda lifting:

turning free variables
into arguments

Background (1D)
Expressions 19 Young Won Lim

7/7/18

Let-floating transformation

let-oating transformations:

floating inwards moves bindings as far inwards as possible

let x = y+1

in case z of

 [] -> x*x

 (p:ps) -> 1

the full laziness transformation floats selected bindings

outside enclosing lambda abstractions

f = \xs -> letrec

g = \y -> let n = length xs

in ...g...n...

in ...g...

local transformations fine-tune" the location of bindings

https://www.microsoft.com/en-us/research/wp-content/uploads/1996/05/float.pdf

case z of

 [] -> let x = y+1

 in x*x

 (p:ps) -> 1

f = \xs -> let n = length xs

in letrec g = \y -> ...g...n...

in ...g...

Background (1D)
Expressions 20 Young Won Lim

7/7/18

Eta Conversion

An eta conversion (η-conversion) is

adding or dropping of abstraction over a function.

the following two values are equivalent under η-conversion:

\x -> abs x

abs

an eta reduction

\x -> abs x abs

an eta abstraction (expansion)

abs \x -> abs x

Extensive use of η-reduction can lead to Pointfree programming.

It is also typically used in certain compile-time optimisations.

https://wiki.haskell.org/Let_vs._Where

Background (1D)
Expressions 21 Young Won Lim

7/7/18

Eta Expansion

fib = (map fib' [0 ..] !!)

 where

 fib' 0 = 0

 fib' 1 = 1

 fib' n = fib (n - 1) + fib (n - 2)

the second one runs considerably slower than the first.

You may wonder why simply adding an explicit argument to fib

(known as eta expansion) degrades performance so dramatically.

In the first version

fib' is a global constant that never changes,

and you're just indexing into that.

In the second version,

fib is a function that constructs

a new and different fib' for every value of x.

https://wiki.haskell.org/Let_vs._Where

fib x = map fib' [0 ..] !! x

 where

 fib' 0 = 0

 fib' 1 = 1

 fib' n = fib (n - 1) + fib (n - 2)

Prelude> [11, 22, 33, 44, 55] !! 0

11

Prelude> [11, 22, 33, 44, 55] !! 1

22

Prelude> [11, 22, 33, 44, 55] !! 4

55

Background (1D)
Expressions 22 Young Won Lim

7/7/18

Problems with where (2)

fib =

 let fib' 0 = 0

 fib' 1 = 1

 fib' n = fib (n - 1) + fib (n - 2)

 in (map fib' [0 ..] !!)

In the second case, fib' is redefined for every argument x

The compiler cannot know whether you intended this –

 while it increases time complexity it may reduce space complexity.

Thus it will not float the definition out from under the binding of x.

In contrast, in the first function, fib'

can be moved to the top level by the compiler.

The where clause hid this structure and made the application to x

look like a plain eta expansion, which it is not.

https://wiki.haskell.org/Let_vs._Where

fib x =

 let fib' 0 = 0

 fib' 1 = 1

 fib' n = fib (n - 1) + fib (n - 2)

 in map fib' [0 ..] !! x

Young Won Lim
7/7/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

