Complex Series (3A)

Copyright (c) 2012 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Power and Taylor Series

Power series

$$\sum_{n=0}^{\infty} \frac{\boldsymbol{c}_n}{\boldsymbol{c}_n} (\boldsymbol{z} - \boldsymbol{a})^n$$

$$= c_0 + c_1(z-a) + c_2(z-a)^2 + \cdots$$

always converges if
$$|z - a| < R$$

Taylor series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

= $f(a) + f'(a)(z-a) + \frac{f''(a)}{2}(z-a)^2 + \cdots$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

only valid if the series converges

Cauchy's Formula and Taylor Series

(|**)**

(II)

4

Cauchy's Formula

$$f(z) = \frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dw$$

if f'(z) exists in the neighborhood of a point z=a

- f(z) is *infinitely differentiable* in that neighborhood
- f(z) can be expanded in a Taylor series about *a* that converges inside a disk whose radius is equal to the distance between *a* and the *nearest singularity* of f(z)

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(w)}{(w-z)^{n+1}} dw$$

Taylor series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^{n}$$

= $f(a) + f'(a)(z-a) + \frac{f''(a)}{2}(z-a)^{2} + \cdots$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

(=) only valid if the series converges

the region of convergence

Complex Series (3A)

Analyticity

$$f'(z) = \frac{df}{dz} = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}$$

f(z) : analytic in a region

point of the region

f(z) has a (unique) derivative at every

$$\frac{\Delta f}{\Delta z} = \frac{f(z + \Delta z) - f(z)}{\Delta z}, \quad \Delta z = \Delta x + i \Delta y$$

f(z) : analytic at a point z = a

f(z) has a (unique) derivative at every point of some small circle about z = a

Regular point of f(z)

Singular point of f(z)

Isolated singular point of f(z)

a point at which f(z) is analytic

a point at which f(z) is <u>not</u> analytic

a point at which f(z) is analytic everywhere else inside some small circle about the singular point

Isolated Singularities

f(z) : singularat $z = z_0$ f(z) is not analytic at $z = z_0$ but every neighborhood of $z = z_0$ contains points at which f(z) is analytic $z = z_0$: isolated singularityf(z) has neighborhood withoutfurther singularities of f(z)

$$\tan(z) \qquad z = \frac{\pi}{2} + n\pi \qquad n = \pm 1, \pm 2, \pm 3, \cdots$$

:isolated singularities
$$\tan\left(\frac{1}{z}\right) \qquad z = \frac{1}{\left(\frac{\pi}{2} + n\pi\right)} \qquad \frac{1}{z} = \frac{\pi}{2} + n\pi$$

:isolated singularities

Infinitely Differentiable

f(z) = u(x, y) + iv(x, y) : analytic in a region R

derivatives of all orders at points inside region

 $f'(z_0)$, $f''(z_0)$, $f^{(3)}(z_0)$, $f^{(4)}(z_0)$, ...

Taylor series expansion about any point z_0 inside the region

The power series **converges** inside the circle about z_0

This circle extends to the nearest singular point

Power Series

A power series in powers of $(z-z_0)$

non-negative powers

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots$$

converges for
$$|z - z_0| < R$$

termwise differentiation termwise integration the same radius of convergence *R*

A power series in powers of z = (z - 0) non-negative powers

$$\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \cdots$$

Cauchy's Integral Formula

Taylor Series

A power series in powers of $(z-z_0)$

non-negative powers

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots$$

Conversely, every analytic function f(z) can be represented by power series.

The **Taylor series** of a function f(z) $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ $a_n = \frac{1}{n!} f^{(n)}(z_0)$

converges for all z in the open disk with center z_0 and radius generally equal to the distance from z_0 to the nearest singularity of f(z)

Taylor Series Coefficients

A power series in powers of $(z-z_0)$

non-negative powers

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots$$

The **Taylor series** of a function f(z)

non-negative powers

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 $a_n = \frac{1}{n!} f^{(n)}(z_0)$

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(w)}{(w-z)^{n+1}} dw$$

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(w)}{(w-z_0)^{n+1}} dw$$

Maclaurin Series Coefficients

A power series in powers of z = (z - 0) non-negative powers

$$\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \cdots$$

The Maclaurin series of a function f(z)

non-negative powers

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 $a_n = \frac{1}{n!} f^{(n)}(0)$

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(w)}{(w-z)^{n+1}} dw$$

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w^{n+1}} dw$$

Laurent's Theorem

f(z) : analytic in the annular domain D between concentric circles C_1 and C_2 centered at z_0

$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

+
$$b_1(z-z_0)^{-1}$$
 + $b_2(z-z_0)^{-2}$ + ...

analytic f(z)

concentric circles, annular domain

 z_0

: convergent in the region D

Laurent's Theorem - Region of Convergence

f(z) : analytic in the annular domain D between concentric circles C_1 and C_2 centered at z_0

$$a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

For this "a" series to <u>converge</u>, the ROC must be in the form

$$|z - z_0| < R$$

inside of C

 z_0

 C_1

+
$$b_1(z-z_0)^{-1}$$
 + $b_2(z-z_0)^{-2}$ + ... principal par

For this "b" series to <u>converge</u>, the ROC must be in the form

$$\left|\frac{1}{z-z_0}\right| < r$$

outside of C

Complex Series (3A)

Expanding, Compressing the Region

: convergent also in the enlarged open annulus expanding C_2 and compressing C_1 until the circles reach a singular point

the previous equation is valid for all z near z_0 in some deleted neighborhood of z_0 (punctured open disk)

the special case

 z_0 is the only singular point inside C_1 the series is **convergent** in a disk **except** its center

$$a_{0} + a_{1}(z-z_{0}) + a_{2}(z-z_{0})^{2} + \cdots$$

+ $b_{1}(z-z_{0})^{-1} + b_{2}(z-z_{0})^{-2} + \cdots$

principal part

Complex Series (3A)

= f(z)

Different Domains, Different Expansions

$$F(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n + \sum_{n=1}^{+\infty} b_n (z-z_0)^{-n}$$
 in D₁₂

$$f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^n + \sum_{n=1}^{+\infty} d_n (z - z_0)^{-n}$$
 in D₂₃

$$f(z) = \sum_{n=0}^{+\infty} e_n (z - z_0)^n + \sum_{n=1}^{+\infty} f_n (z - z_0)^{-n}$$
 in D₃₄

different Laurent expansions of a the same function f(z) for different domains

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$$
principal part + $b_1(z - z_0)^{-1} + b_2(z - z_0)^{-2} + \cdots$

Several Isolated Singularities

A Laurent series converges between two concentric circles, if it converges at all.

Several isolated singularites

Several annular rings

Several different Laurent series for each rings

Regions in Laurent Series and Taylor Series

The **Taylor series** of a function f(z)

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \qquad a_n = \frac{1}{n!} f^{(n)}(z_0)$$

converges for all z in the open disk with center z_0 and radius generally equal to the distance from z_0 to the nearest singularity of f(z)

Laurent Series in different forms

f(z) : analytic in the annular domain D between concentric circles C_1 and C_2 centered at z_0

$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

+
$$b_1(z-z_0)^{-1}$$
 + $b_2(z-z_0)^{-2}$ + ...

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0) + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
$$= a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$$
$$+ \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \cdots$$

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

convergent in the region D

Complex Series (3A)

analytic f(z)

Coefficients a_n & b_n

$$f(z) = \dots + a_n (z - z_0)^n + \dots$$

$$\frac{f(z)}{(z - z_0)^{n+1}} = \dots + \frac{a_n}{(z - z_0)} + \dots$$

$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \oint_C \frac{a_n}{(z-z_0)} dz$$

$$= 2\pi i \cdot a_n$$

$$a_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz$$

$$f(z) = \dots + \frac{b_n}{(z-z_0)^n} + \dots$$

$$\frac{f(z)}{(z-z_0)^{-n+1}} = \dots + \frac{b_n}{(z-z_0)} + \dots$$

$$\oint_C \frac{f(z)}{(z-z_0)^{-n+1}} dz = \oint_C \frac{b_n}{(z-z_0)} dz$$

$$= 2\pi i \cdot b_n$$

$$b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{-n+1}} dz$$

Complex Series (3A)

Laurent's Series Coefficients

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots + b_1(z - z_0)^{-1} + b_2(z - z_0)^{-2} + \cdots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \cdots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \cdots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \cdots + \frac{b_1}{(z - z_0)^2} + \frac{b_2}{(z - z_0)^2} + \cdots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \cdots + \frac{b_1}{(z - z_0)^2} + \frac{b_2}{(z - z_0)^2} + \cdots + \frac{b_1}{(z - z_0)^2} + \frac{b_2}{(z - z_0)^2} + \frac{b_2}{(z - z_0)^2} + \cdots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \frac{b_2}{(z - z_0)^2}$$

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$$
$$a_k = \frac{1}{2\pi i} \oint_C \frac{f(w)}{(w - z)^{k+1}} dw \qquad k = \cdots, -3, -2, -1, 0, 1, 2, 3, \cdots$$

Complex Series (3A)

Laurent's Theorem and Coefficients

f(z) : analytic in the annular domain D between concentric circles C_1 and C_2 centered at z_0 $r < |z - z_0| < R$

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots + b_1(z - z_0)^{-1} + b_2(z - z_0)^{-2} + \cdots$$

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
any simple closed path C in D
$$b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{-n+1}} dz$$

$$f(z) = \sum_{n=-\infty}^{\infty} a_k (z - z_0)^k \qquad a_k = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{k+1}} dz$$

Residue

: analytic in the annular domain D f(z) $z_0 \bullet^{\mathsf{C}_1}$ z_0 • z_0 between concentric circles C₁ and C₂ centered at z_0 $r < |z - z_0| < R$ $f(z) = \sum_{n=-\infty}^{\infty} a_k (z - z_0)^k \qquad a_k = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{k+1}} dz$ k = -1 z_0 can be an isolated singularity $f(z) = \cdots + \frac{a_{-1}}{(z - z_0)} + \cdots$ $a_{-1} = Res(f(z), z_0)$ z_0 : residue of the function f(z)at the isolated singularity z_0 $a_{-1} = \frac{1}{2\pi i} \oint_C f(z) dz$ $\oint_{C} f(z) dz = 2\pi i \operatorname{Res}(f(z), z_{0})$

Cauchy-Goursat Theorem

Residue Theorem

z_0, z_1 : isolated singularities

 \blacktriangleright Laurent series expansion around z_0 $f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n \quad \Longrightarrow \quad \oint_{C1} f(z) \, dz = 2 \pi i \cdot a_{-1}$ Laurent series expansion around z₁ $f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_1)^n \quad \Longrightarrow \quad \oint_{C^2} f(z) \, dz = 2 \pi i \cdot c_{-1}$ $\oint_{C} f(z) dz = \oint_{C_{1}} f(z) dz + \oint_{C_{2}} f(z) dz = 2\pi i \cdot a_{-1} + 2\pi i \cdot c_{-1}$ $\oint f(z) dz = 2\pi i \{ Res(f(z), z_0) + Res(f(z), z_1) \}$ z_0, z_1 : regular points

$$\oint_C f(z) dz = \oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz = 0$$

Complex Series (3A)

Laurent Expansion Example (1)

Laurent Expansion Example (2)

Laurent Expansion Example (3)

Laurent Expansion Example (4)

Laurent Expansion Example (5)

$$f(z) = \frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1}$$

z = -2 Not an isolated singular point

$$\frac{1}{z-1} = \frac{1}{z+2-3} = \frac{-1}{3\left(1-\frac{1}{z+2}\right)}$$

$$= -\frac{1}{3} \left[1 + \frac{1}{(z+2)} + \frac{1}{(z+2)^2} + \frac{1}{(z+2)^3} \cdots \right]$$

$$-\frac{1}{z} = -\frac{1}{z+2-2} = \frac{-1}{2\left(1-\frac{z+2}{2}\right)}$$

$$= -\frac{1}{2} \left[1 + \frac{(z+2)}{2} + \frac{(z+2)^2}{2^2} + \frac{(z+2)^3}{2^3} \cdots \right]$$

essential singularity

Laurent Expansion Example (6)

$$f(z) = \frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1}$$

$$z = +2$$
Not an isolated singular point
$$\frac{1}{z-1} = \frac{1}{1+z-2} = \frac{1}{(z-2)\left(1+\frac{1}{z-2}\right)}$$

$$= \frac{1}{z-2}\left[1 - \frac{1}{(z-2)} + \frac{1}{(z-2)^2} - \frac{1}{(z-2)^3} \cdots\right]$$

$$\frac{1}{z-1} = -\frac{1}{2}\left[1 - \frac{1}{(z-2)} + \frac{1}{(z-2)^2} - \frac{1}{(z-2)^3} \cdots\right]$$

$$|z-2| < 2$$

Laurent Expansion Example (7)

$$f(z) = \frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1}$$

$$\frac{1}{z-1} = \frac{1}{z\left(1-\frac{1}{z}\right)} = \frac{1}{z}\left[1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}\cdots\right]$$

$$\frac{1}{z(z-1)} = \left[\frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} \cdots\right]$$

$$\frac{1}{z-1} - \frac{1}{z} = \left[\frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} \cdots \right]$$

essential singularity

1 < |z| < 2case 7 $\frac{1}{|z|}$ < 1 |*z*| < 2 1 0 o

Complex Series (3A)

Singular Point

a point at which f(z) is analytic **Regular** point of f(z)**Singular** point of f(z)a point at which f(z) is <u>not</u> analytic Δ **Isolated Singular** point of f(z)a point at which f(z) is analytic R everywhere else inside some small circle about the singular point If $z=z_0$ has a neighborhood **Isolated Singularity** of f(z) at z_0 without further singularities of f(z)There exists some *deleted* neighborhood or punctured open \odot *disk* of z_0 throughout which f(z) is analytic $0 < |z - z_0| < R$

Non-isolated Singularity

Cluster points: limit points of isolated singularities. If they are all poles, despite admitting Laurent series expansions on each of them, no such expansion is possible at its limit

$$f(z) = \tan(1/z)$$

simple poles $z_n = \frac{1}{(\pi/2 + n\pi)}$
$$\lim_{n \to 0} z_n = 0$$

Every punctured disk centered at 0 has an infinite number of singularities. No Laurent expansion

Natural boundaries: non-isolated set (e.g. a curve) which functions can not be analytically continued around (or outside them if they are closed curves in the Riemann sphere).

f(z) = Ln z

the branch point 0

and the negative axis

Every neighborhood of z0 contains at least one singularity of f(z) other than z0

Isolated Singularity Classification (1)

When Laurent expansion is valid for the punctured open disk $0 < |z - z_0| < R$ around z_0 : isolated singularity of f

Depending on the number of terms of the principal part An **isolated singular point** z_0 is called

> A removable singularity A simple pole A pole of order n An essential singularity

no principal part one term in the principal part *n* terms in the principal part infinite terms in the principal part

$$f(z) = \sum_{n=-\infty}^{\infty} a_k (z - z_0)^k = \sum_{n=1}^{\infty} a_{-k} (z - z_0)^{-k} + \sum_{n=0}^{\infty} a_k (z - z_0)^k$$
principal part

Isolated Singularity Classification (2)

When Laurent expansion is valid $0 < |z - z_0| < R$ for the punctured open disk z_0° around z_0 : isolated singularity of f $b_k = 0$ $f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$ \mathcal{Z}_0 removable singularity $f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$ z_0 simple pole $b_1 = a_{-1}$ $f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$ \boldsymbol{z}_0 pole of order n + $\frac{b_1}{(z-z_0)}$ + $\frac{b_2}{(z-z_0)^2}$ + ... + $\frac{b_n}{(z-z_0)^n}$ $b_1 = a_{-1}$ n terms $f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$ z_0 essential singularity + $\frac{b_1}{(z-z_0)}$ + $\frac{b_2}{(z-z_0)^2}$ + \cdots + $\frac{b_n}{(z-z_0)^n}$ + \cdots infinite terms $b_1 = a_{-1}$

Isolated Singularity Examples (1)

$$sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots$$
 $z=0$ regular point

 $\frac{sin(z)}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \cdots$
 $z=0$ removable singularity

 $\frac{sin(z)}{z^2} = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} + \cdots$
 $z=0$ simple pole

 $\frac{sin(z)}{z^3} = \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} + \cdots$
 $z=0$ pole of order 2

 $e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$
 $z=0$ regular point

 $e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$
 $z=0$ essential singularity

Isolated Singularity Examples (2)

Singularities of Order n

- $\boldsymbol{z}_{\scriptscriptstyle 0}~~ {\sf A}$ zero of a function f
 - $f(z_0) = 0$
- z_0 A zero of order n of a function f

$$f(z_0) = 0, f'(z_0) = 0, f''(z_0) = 0, \cdots, f^{(n)}(z_0) = 0$$

$$z_0$$
 A pole of order n of a function $F(z) = g(z) / f(z)$

f, g : analytic at
$$z = z_0$$

$$= \begin{cases} g(z_0) \neq 0 \\ f(z_0) = 0, \ f'(z_0) = 0, \ f''(z_0) = 0, \ \cdots, \ f^{(n)}(z_0) = 0 \end{cases}$$

f : analytic at $z = z_0$

f : **analytic** at $z = z_0$

Isolated Singularities

 z_0 A isolated singularity of a function f

 z_0 A removable singularity of a function f $= \lim_{z \to z_0} f(z) < \infty$ bounded on the punctured disk z_0 A pole of order n of a function f $\stackrel{\sim}{=} \quad \lim_{z \to z_0} (z - z_0)^m f(z) < \infty \qquad \stackrel{\sim}{=} \quad \lim_{z \to z_0} f(z) = \pm \infty$ z_0 A essential singularity of a function f $\stackrel{\sim}{=} \begin{cases} \lim_{z \to z_0} f(z) < \infty \\ \lim_{z \to z_0} f(z) = \pm \infty \end{cases}$ has no limit when $z \rightarrow z_0$ $z \rightarrow z_c$

Essential Singularity Examples

$$\frac{\sin(z)}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \cdots$$

$$z = 0 \text{ a removable singularity}$$

$$\frac{f(z)}{z}$$

$$f(z) = \sin(z) \text{ analytic}$$

$$f(0) = 0$$

$$\frac{e^z}{z^m} = \frac{1}{z^m} + \frac{1}{z^{m-1}} + \frac{1}{2!z^{m-2}} + \frac{1}{3!z^{m-3}} + \cdots + \frac{1}{(m-1)!z} + \cdots$$

$$z = 0 \text{ a pole of order m}$$

$$\frac{f(z)}{z^m}$$

$$f(z) = e^z \text{ analytic}$$

$$f(0) = 1 \neq 0$$

$$\frac{e^z}{z^m} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$$

$$z = 0 \text{ a pole of order m}$$

$$z = 0 \text{ an essential singularities}$$

$$= \cdots + \frac{1}{3!z^3} + \frac{1}{2!z^2} + \frac{1}{z} + 1$$

http://stat.math.uregina.ca/~kozdron/Teaching/Regina/312Fall12/Handouts/312_lecture_notes_F12_Part2.pdf

Complex Series (3A)

Essential Singularity and Cauchy Integral

f(z) : analytic on and inside simple close curve C

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-a} dz \qquad f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz$$

$$\int_{C} \frac{\sin(z)}{z} dz = 0 \qquad \qquad \frac{1}{2\pi i} \int_{C} \frac{\sin(z)}{z-0} dz = \sin(0) = 0$$

$$\int_{C} \frac{e^{z}}{z^{m}} dz = \frac{2\pi i}{(m-1)!} \qquad \qquad \frac{k!}{2\pi i} \int_{C} \frac{e^{z}}{(z-0)^{k+1}} dz = \left[\frac{d^{k}}{dz^{k}}e^{z}\right]_{z=0} = 1 \qquad k = m$$

$$\int_{C} e^{\frac{1}{z}} dz = 2\pi i \qquad \qquad \text{Can't find analytic f(z)}$$
No Cauchy Integral Formula applicable

But a residue integral can be applied

http://stat.math.uregina.ca/~kozdron/Teaching/Regina/312Fall12/Handouts/312_lecture_notes_F12_Part2.pdf

Complex Series (3A)

-1

Essential Singularity Examples

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$$

if z=0 is a pole $z \to 0 \Rightarrow e^{\frac{1}{z}} \to \infty$
if z=0 is an essential singularity $z \to 0 \Rightarrow e^{\frac{1}{z}} \to \infty$ not always
 $z = re^{j\theta} \qquad \frac{1}{z} = \frac{1}{r}e^{-j\theta}$
 $\theta = -\frac{\pi}{2} \qquad r \to 0 \qquad \frac{1}{z} \to 0$
 $e^{\frac{1}{z}} \to 1$

http//paulscottinfo.ipage.com/CA2/ca7.html

http://stat.math.uregina.ca/~kozdron/Teaching/Regina/312Fall12/Handouts/312_lecture_notes_F12_Part2.pdf

Complex Series (3A)

43

Essential Singularity Examples (2)

$$\frac{\sin(z)}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \cdots \qquad \sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots$$

$$\frac{e^z}{z^m} = \frac{1}{z^m} + \frac{1}{z^{m-1}} + \frac{1}{2!z^{m-2}} + \frac{1}{3!z^{m-3}} + \cdots + \frac{1}{(m-1)!z} + \cdots$$

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots \qquad e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$

$$\int_C \frac{\sin(z)}{z} dz = 0 \qquad \longleftarrow \qquad a_{-1} = 0 \qquad = \operatorname{Res}\left(\frac{\sin(z)}{z}, 0\right) \qquad 2\pi i \left[\operatorname{Res}(f(z), 0)\right]$$

$$\int_C \frac{e^z}{z^m} dz = \frac{2\pi i}{(m-1)!} \qquad \bigoplus \qquad a_{-1} = \frac{1}{(m-1)!} = \operatorname{Res}\left(\frac{e^z}{z^m}, 0\right) \qquad 2\pi i \left[\operatorname{Res}(f(z), 0)\right]$$

$$\int_C e^{\frac{1}{z}} dz = 2\pi i \qquad \longleftarrow \qquad a_{-1} = 1 \qquad = \operatorname{Res}\left(\frac{e^{\frac{1}{z}}}{e^{\frac{1}{z}}}, 0\right) \qquad 2\pi i \left[\operatorname{Res}(f(z), 0)\right]$$

http://stat.math.uregina.ca/~kozdron/Teaching/Regina/312Fall12/Handouts/312_lecture_notes_F12_Part2.pdf

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
- [4] E. Kreyszig, "Advanced Engineering Mathematics"
- [5] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"
- [6] T. J. Cavicchi, "Digital Signal Processing"
- [7] F. Waleffe, Math 321 Notes, UW 2012/12/11