
Young Won Lim
5/10/23

Statements (1A)

Young Won Lim
5/10/23

 Copyright (c) 2023 - 2015 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Statements 3 Young Won Lim
5/10/23

Variables and Types (1)

C variables are statically typed
need to specify whether a variable x is
an int or a float right up front
before using the variable

In Python, you don't:

x = 1
type(x)
int

no need to declare variables
just use them whenever we need to,
without declaring them

the type of x is an int,
x is a reference to an integer object,
which has the value 1.

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Statements 4 Young Won Lim
5/10/23

Variables and Types (2-1)

x itself doesn't have a fixed type.
x can be re-assigned

x = 1.2
type(x)
float

x = "hello"
type(x)
str

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Statements 5 Young Won Lim
5/10/23

Dynamic type checking

Python does not say
whether the operation is legal or not:
until you try to do something with a variable

len(x)
5

this will work because x is a string “hello”

x = 1.2
len(x)

TypeError Traceback (most recent call last)
<ipython-input-5-31756c9ed6f5> in <module>()

1 x = 1.2
----> 2 len(x) #what will happen here?
TypeError: object of type 'float' has no len()

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Statements 6 Young Won Lim
5/10/23

Type coercion

type coercion

when it makes sense, it will convert an object
from one type to another to let an operation work

p = 1
print (type(p))

q = .2
print (type(q))

r = p + q
print (type(r))
print ("value of r: {}".format(r))

<type 'int'>
<type 'float'>
<type 'float'>
value of r: 1.2

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Statements 7 Young Won Lim
5/10/23

print statement (1)

the parentheses around the argument to print
are optional

p = 1
print type(p)

q = .2
print type(q)

r = p + q
print type(r)
print "value of r: {}".format(r)

formatted print

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Statements 8 Young Won Lim
5/10/23

print statement (2)

print (“first: %3d, second: %8.2f}” %(123, 3.14))

https://www.geeksforgeeks.org/python-output-formatting/

first: 123, second: 3.14

first argument = 123

3d 8.2f

second argument = 3.14

Statements 9 Young Won Lim
5/10/23

print statement (3)

print (“first: {0:3d}, second: {1:8.2f}”.format(123, 3.14))

https://www.geeksforgeeks.org/python-output-formatting/

first: 123, second: 3.14

0 first argument = 123

3d 8.2f

1 second argument = 3.14

Statements 10 Young Won Lim
5/10/23

Control Statements (1)

Control statements in Python
Is similar to their counterparts in C:

● if statements,
● while loops,
● for loops.

The biggest difference is that
in Python whitespace matters.

Python does not use { and }
to separate blocks.

instead, Python use
● colons (:) to mark the beginning of a block and
● indentation to mark what is in the block.

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Statements 11 Young Won Lim
5/10/23

if statement (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

If Statements

Here is the equivalent of the C statement:

if (r < 3) printf("x\n");
else printf("y\n");

if r < 3:
 print "x"
else:
 print "y"

Statements 12 Young Won Lim
5/10/23

if statement (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

And an example of multiline blocks:

if r < 1:
 print "x"
 print "less than 1"
elif r < 2:
 print "y"
 print "less than 2"
elif r < 3:
 print "z"
 print "less than 3"
else:
 print "w"
 print "otherwise!"

Statements 13 Young Won Lim
5/10/23

while loop (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

x = 1
y = 1
while (x <= 10) :
 y *= x
 x += 1
print y

Statements 14 Young Won Lim
5/10/23

while loop (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

x = 1
y = 1
while (x <= 10) :
 if x

File "<ipython-input-10-0f64722897ca>", line 4
if x
^
SyntaxError: invalid syntax

Statements 15 Young Won Lim
5/10/23

for loop (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

for loops in Python
are not like those in C

instead, iterate over collections (e.g., lists).

are more like foreach loops in other languages

for (x : list) construct in Java

Statements 16 Young Won Lim
5/10/23

for loop (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

data = [1, 4, 9, 0, 4, 2, 6, 1, 2, 8, 4, 5, 0, 7]
print data

[1, 4, 9, 0, 4, 2, 6, 1, 2, 8, 4, 5, 0, 7]

hist = 5 * [0]
print hist

[0, 0, 0, 0, 0]

Statements 17 Young Won Lim
5/10/23

for loop (3)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Lists work like a combination of
 arrays in C

(you can access them using []) and
 lists

(you can append elements, remove elements, etc.)

L = len(data)
print "data length: {} data[{}] = {}".format(L, L-1, data[L-1])

data length: 14 data[13] = 7

data.append(8)
L = len(data)
print "data length: {} data[{}] = {}".format(L, L-1, data[L-1])

data length: 15 data[14] = 8

Statements 18 Young Won Lim
5/10/23

for loop (4)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

You can then iterate over the elements of the list:

for d in data :
 print d

for d in data :
 hist[d / 2] += 1
print hist

[4, 2, 4, 2, 3]

1
4
9
0
4
2
6
1
2
8
4
5
0
7
8

0
2
4
0
2
1
3
0
1
4
2
2
0
3
4

0
0
0
0
1
1
2
2
2
2
3
3
4
4
4

Statements 19 Young Won Lim
5/10/23

for loop (5)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

write a for loop with an index variable
that counts from 0 to 4, like in C?

for (int i = 0; i < 5; i++)

Use the standard function range,
which generates a list with values
that count from a lower bound
to an upper bound:

r = range(0,5)
print r

[0, 1, 2, 3, 4]

for i in range(0, 5):
 print i

Statements 20 Young Won Lim
5/10/23

Functions (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Basic functions in Python work a lot like functions in C.

The key differences are:

1. You don't have to specify a return type.
In fact, you can return more than one thing!

2. You don't have to specify
the types of the arguments

3. When calling functions,
you can name the arguments
(and thus change the order of the call)

def foo(x) :
 return x * 2

print foo(10)

Statements 21 Young Won Lim
5/10/23

Functions (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

def foo2(x) :
 return x * 2, x * 4

(a, b) = foo2(10)
print a, b

def foo3(x, y) :
 return 2 * x + y

print foo3(7, 10)
print foo3(y = 10, x = 7)

def foo2(10) :
 return 10 * 2, 10 * 4

(a, b) = foo2(10)

def foo3(7, 10) :
 return 2 * 7 + 10

print foo3(7, 10)
print foo3(y = 10, x = 7)

Statements 22 Young Won Lim
5/10/23

Functions (3)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

There are more complicated things you can do with functions -- nested functions,
functions as arguments,
functions as return values, etc. We will look at these in the lecture when we talk
about Map and Reduce

Young Won Lim
5/10/23

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

