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Variables and Types (1)

C variables are statically typed 
need to specify whether a variable x is 
an int or a float right up front
before using the variable 

In Python, you don't:

x = 1
type(x)
int

no need to declare variables 
just use them whenever we need to,
without declaring them 

the type of x is an int, 
x is a reference to an integer object, 
which has the value 1. 

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf
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Variables and Types (2-1)

x itself doesn't have a fixed type. 
x can be re-assigned

x = 1.2
type(x)
float

x = "hello"
type(x)
str

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf
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Dynamic type checking

Python does not say 
whether the operation is legal or not:
until you try to do something with a variable

len(x) 
5

this will work because x is a string “hello”
 

x = 1.2
len(x) 
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-5-31756c9ed6f5> in <module>()

1 x = 1.2
----> 2 len(x) #what will happen here?
TypeError: object of type 'float' has no len()

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf
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Type coercion

type coercion 

when it makes sense, it will convert an object 
from one type to another to let an operation work

p = 1
print (type(p)) 

q = .2
print (type(q))

r = p + q
print (type(r))
print ("value of r: {}".format(r)) 

<type 'int'>
<type 'float'>
<type 'float'>
value of r: 1.2

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf
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print statement (1)

the parentheses around the argument to print 
are optional

p = 1
print type(p) 

q = .2
print type(q)

r = p + q
print type(r)
print "value of r: {}".format(r) 

formatted print

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf
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print statement (2)

print (“first: %3d, second: %8.2f}” %(123, 3.14))

https://www.geeksforgeeks.org/python-output-formatting/

first: 123, second:    3.14 

first argument = 123

3d 8.2f

second argument = 3.14
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print statement (3)

print (“first: {0:3d}, second: {1:8.2f}”.format(123, 3.14))

https://www.geeksforgeeks.org/python-output-formatting/

first: 123, second:    3.14 

0  first argument = 123

3d 8.2f

1  second argument = 3.14
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Control Statements (1)

Control statements in Python 
Is similar to their counterparts in C: 

● if statements, 
● while loops, 
● for loops.

The biggest difference is that 
in Python whitespace matters. 

Python does not use { and } 
to separate blocks.

instead, Python use 
● colons (:) to mark the beginning of a block and 
● indentation to mark what is in the block.

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf
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if statement (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

If Statements

Here is the equivalent of the C statement:

if (r < 3) printf("x\n"); 
else printf("y\n");

if r < 3:
        print "x"
else:
        print "y"
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if statement (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

And an example of multiline blocks:

if r < 1:
        print "x"
        print "less than 1"
elif r < 2:
        print "y"
        print "less than 2"
elif r < 3:
        print "z"
        print "less than 3"
else:
        print "w"
        print "otherwise!"
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while loop (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

x = 1
y = 1
while (x <= 10) :
        y *= x
        x += 1
print y
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while loop (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

x = 1
y = 1
while (x <= 10) :
        if x

File "<ipython-input-10-0f64722897ca>", line 4
if x
^
SyntaxError: invalid syntax
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for loop (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

for loops in Python 
are not like those in C 

instead, iterate over collections (e.g., lists). 

are more like foreach loops in other languages

for (x : list) construct in Java
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for loop (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

data = [1, 4, 9, 0, 4, 2, 6, 1, 2, 8, 4, 5, 0, 7]
print data

[1, 4, 9, 0, 4, 2, 6, 1, 2, 8, 4, 5, 0, 7]

hist = 5 * [0]
print hist

[0, 0, 0, 0, 0]
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for loop (3)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Lists work like a combination of 
    arrays in C 

(you can access them using [ ]) and 
    lists 

(you can append elements, remove elements, etc.)

L = len(data)
print "data length: {} data[{}] = {}".format(L, L-1, data[L-1])

data length: 14 data[13] = 7

data.append(8)
L = len(data)
print "data length: {} data[{}] = {}".format(L, L-1, data[L-1])

data length: 15 data[14] = 8
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for loop (4)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

You can then iterate over the elements of the list:

for d in data :
        print d

for d in data :
        hist[d / 2] += 1
print hist

[4, 2, 4, 2, 3]

1
4
9
0
4
2
6
1
2
8
4
5
0
7
8

0
2
4
0
2
1
3
0
1
4
2
2
0
3
4

0
0
0
0
1
1
2
2
2
2
3
3
4
4
4



Statements 19 Young Won Lim
5/10/23

for loop (5)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

write a for loop with an index variable 
that counts from 0 to 4, like in C? 

for (int i = 0; i < 5; i++)

Use the standard function range, 
which generates a list with values 
that count from a lower bound 
to an upper bound:

r = range(0,5)
print r

[0, 1, 2, 3, 4]

for i in range(0, 5):
        print i
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Functions (1)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

Basic functions in Python work a lot like functions in C. 

The key differences are:

1. You don't have to specify a return type. 
In fact, you can return more than one thing!

2. You don't have to specify 
the types of the arguments

3. When calling functions, 
you can name the arguments 
(and thus change the order of the call)

def foo(x) :
        return x * 2

print foo(10)
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Functions (2)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

def foo2(x) :
        return x * 2, x * 4

(a, b) = foo2(10)
print a, b

def foo3(x, y) :
        return 2 * x + y

print foo3(7, 10)
print foo3(y = 10, x = 7)

def foo2(10) :
        return 10 * 2, 10 * 4

(a, b) = foo2(10)

def foo3(7, 10) :
        return 2 * 7 + 10

print foo3(7, 10)
print foo3(y = 10, x = 7)
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Functions (3)

https://engineering.purdue.edu/~milind/datascience/2018spring/notes/lecture-2.pdf

There are more complicated things you can do with functions -- nested functions, 
functions as arguments,
functions as return values, etc. We will look at these in the lecture when we talk 
about Map and Reduce
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