
Young Won Lim
10/10/21

● Loop
●

Single Construct (14A)

Young Won Lim
10/10/21

 Copyright (c) 2021 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Single Construct (14A) 3 Young Won Lim
10/10/21

Master thread and a team of threads

Immediately preceding the parallel block,
one thread will be executing the code.

In the main program this is the initial thread.

At the start of the block, a new team of threads is created,
and the thread that was active before the block becomes
the master thread of that team.

After the block, only the master thread is active.

Inside the block there is team of threads:

each thread in the team
● executes the body of the block,
● can access all variables of the surrounding environment.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

parallel code
executed by
team of threads

master
thread

Single Construct (14A) 4 Young Won Lim
10/10/21

single construct

● the specified structured block is executed
● by only one of the threads in the team
● in the context of its implicit task.

● The executing thread need not be
the master thread

● the other threads in the team
● do not execute the block
● wait at an implicit barrier

at the end of the single construct
unless a nowait clause is specified.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

Single Construct (14A) 5 Young Won Lim
10/10/21

single construct

#pragma omp single [clause[[,] clause] ...] new-line
 structured-block

where clause is one of the following:

private(list)
firstprivate(list)
copyprivate(list)
allocate([allocator :] list)
nowait

https://www.openmp.org/spec-html/5.0/openmpsu38.html#x60-1090002.8.2

Single Construct (14A) 6 Young Won Lim
10/10/21

Single

The single construct specifies that
the associated structured block is
executed by only one of the threads in the team
(not necessarily the master thread),
in the context of its implicit task.

The other threads in the team,
which do not execute the block,
wait at an implicit barrier
at the end of the single construct
unless a nowait clause is specified.

https://www.openmp.org/spec-html/5.0/openmpsu38.html

Single Construct (14A) 7 Young Won Lim
10/10/21

c(0)

c(1)

c(2)

c(3)

Single

denotes block of code
to be executed by only one thread

• first thread to arrive is chosen
• implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp single
{

b();
} // threads wait here for single
c();

}

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

a(0)

a(2)

a(4)

a(8)

a(1)

a(3)

bchosen

Single Construct (14A) 8 Young Won Lim
10/10/21

Master

Denotes block of code to be executed only by the master thread
No implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp master
{ // if not master skip to next stmtp

b();
}
c();

|

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

c(0)

c(1)

c(2)

c(3)

a(0)

a(2)

a(4)

a(8)

a(1)

a(3)

bmaster

Single Construct (14A) 9 Young Won Lim
10/10/21

Single (1)

int main()
{
 int salaries1 = 0;
 int salaries2 = 0;

 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 std::cout << "Salaries1: " << salaries1 << std::endl;

 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }

 std::cout << "Salaries2: " << salaries2 << std::endl;

 return 0;
}

http://jakascorner.com/blog/2016/06/omp-single.html

Single Construct (14A) 10 Young Won Lim
10/10/21

Single (2)

int salaries1 = 0;
int salaries2 = 0;

#pragma omp parallel shared(salaries1, salaries2)
{
 #pragma omp for reduction(+: salaries1)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 std::cout << "Salaries1: " << salaries1 << std::endl;

 #pragma omp for reduction(+: salaries2)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }

 std::cout << "Salaries2: " << salaries2 << std::endl;
}

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

Single Construct (14A) 11 Young Won Lim
10/10/21

Single (v1)

#pragma omp parallel for reduction(+: salaries1)
for (int employee = 0; employee < 25000; employee++)
{
 salaries1 += fetchTheSalary(employee, Co::Company1);
}

std::cout << "Salaries1: " << salaries1 << std::endl;

#pragma omp parallel for reduction(+: salaries2)
for (int employee = 0; employee < 25000; employee++)
{
 salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

JOIN

FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

Single Construct (14A) 12 Young Won Lim
10/10/21

Single (v2)

#pragma omp parallel for reduction(+: salaries1, salaries2)
for (int employee = 0; employee < 25000; employee++)
{
 salaries1 += fetchTheSalary(employee, Co::Company1);
 salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries1: " << salaries1 << "\n"
 << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing
2nd printing

Single Construct (14A) 13 Young Won Lim
10/10/21

Single (v3)

#pragma omp parallel shared(salaries1, salaries2)
{
 #pragma omp for reduction(+: salaries1)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries1 += fetchTheSalary(employee, Co::Company1);
 }

 #pragma omp single
 {
 std::cout << "Salaries1: " << salaries1 << std::endl;
 }

 #pragma omp for reduction(+: salaries2)
 for (int employee = 0; employee < 25000; employee++)
 {
 salaries2 += fetchTheSalary(employee, Co::Company2);
 }
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
 parallel

1st for loop

2nd for loop

1st printing

2nd printing

SINGLE

END SINGLE

Single Construct (14A) 14 Young Won Lim
10/10/21

References

[1] en.wikipedia.org
[2] M Harris, http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

