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Master thread and a team of threads

Immediately preceding the parallel block, 
one thread will be executing the code. 

In the main program this is the initial thread.

At the start of the block, a new team of threads is created, 
and the thread that was active before the block becomes 
the master thread of that team.

After the block, only the master thread is active.

Inside the block there is team of threads: 

each thread in the team 
● executes the body of the block, 
● can access all variables of the surrounding environment. 

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

parallel code 
executed by 
team of threads

master
thread
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single construct

● the specified structured block is executed 
● by only one of the threads in the team 
● in the context of its implicit task. 

● The executing thread need not be 
the master thread 

● the other threads in the team 
● do not execute the block 
● wait at an implicit barrier 

at the end of the single construct 
unless a nowait clause is specified. 

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html
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single construct

#pragma omp single [clause[ [,] clause] ... ] new-line 
   structured-block
  

where clause is one of the following:  

 
private(list) 
firstprivate(list) 
copyprivate(list) 
allocate([allocator :] list) 
nowait
       

https://www.openmp.org/spec-html/5.0/openmpsu38.html#x60-1090002.8.2
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Single

The single construct specifies that 
the associated structured block is 
executed by only one of the threads in the team 
(not necessarily the master thread), 
in the context of its implicit task. 

The other threads in the team, 
which do not execute the block, 
wait at an implicit barrier 
at the end of the single construct 
unless a nowait clause is specified. 

https://www.openmp.org/spec-html/5.0/openmpsu38.html
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c(0)

c(1)

c(2)

c(3)

Single

denotes block of code 
to be executed by only one thread

• first thread to arrive is chosen
• implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp single 
{

b();
} // threads wait here for single
c();

}

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf
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Master

Denotes block of code to be executed only by the master thread
No implicit barrier at end

#pragma omp parallel
{

a();
#pragma omp master
{ // if not master skip to next stmtp

b();
}
c();

|

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf
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Single (1)

int main()
{
    int salaries1 = 0;
    int salaries2 = 0;
    
    for (int employee = 0; employee < 25000; employee++)
    {
        salaries1 += fetchTheSalary(employee, Co::Company1);
    }

    std::cout << "Salaries1: " << salaries1 << std::endl;

    for (int employee = 0; employee < 25000; employee++)
    {
        salaries2 += fetchTheSalary(employee, Co::Company2);
    }

    std::cout << "Salaries2: " << salaries2 << std::endl;
    
    return 0;
}

http://jakascorner.com/blog/2016/06/omp-single.html
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Single (2)

int salaries1 = 0;
int salaries2 = 0;

#pragma omp parallel shared(salaries1, salaries2)
{
    #pragma omp for reduction(+: salaries1)
    for (int employee = 0; employee < 25000; employee++)
    {
        salaries1 += fetchTheSalary(employee, Co::Company1);
    }

    std::cout << "Salaries1: " << salaries1 << std::endl;

    #pragma omp for reduction(+: salaries2)
    for (int employee = 0; employee < 25000; employee++)
    {
        salaries2 += fetchTheSalary(employee, Co::Company2);
    }

    std::cout << "Salaries2: " << salaries2 << std::endl;
}

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
  parallel

1st for loop

2nd for loop

1st printing

2nd printing
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Single (v1)

#pragma omp parallel for reduction(+: salaries1)
for (int employee = 0; employee < 25000; employee++)
{
    salaries1 += fetchTheSalary(employee, Co::Company1);
}

std::cout << "Salaries1: " << salaries1 << std::endl;

#pragma omp parallel for reduction(+: salaries2)
for (int employee = 0; employee < 25000; employee++)
{
    salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

JOIN

FOR

JOIN

#pragma omp
  parallel

1st for loop

2nd for loop

1st printing

2nd printing
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Single (v2)

#pragma omp parallel for reduction(+: salaries1, salaries2)
for (int employee = 0; employee < 25000; employee++)
{
    salaries1 += fetchTheSalary(employee, Co::Company1);
    salaries2 += fetchTheSalary(employee, Co::Company2);
}

std::cout << "Salaries1: " << salaries1 << "\n"
          << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

JOIN

#pragma omp
  parallel

1st for loop

2nd for loop

1st printing
2nd printing
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Single (v3)

#pragma omp parallel shared(salaries1, salaries2)
{
    #pragma omp for reduction(+: salaries1)
    for (int employee = 0; employee < 25000; employee++)
    {
        salaries1 += fetchTheSalary(employee, Co::Company1);
    }

    #pragma omp single
    {
        std::cout << "Salaries1: " << salaries1 << std::endl;
    }

    #pragma omp for reduction(+: salaries2)
    for (int employee = 0; employee < 25000; employee++)
    {
        salaries2 += fetchTheSalary(employee, Co::Company2);
    }
}

std::cout << "Salaries2: " << salaries2 << std::endl;

http://jakascorner.com/blog/2016/06/omp-single.html

FORK

FOR

END FOR

FOR

END FOR

JOIN

#pragma omp
  parallel

1st for loop

2nd for loop

1st printing

2nd printing

SINGLE

END SINGLE
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