
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Sat, 09 Mar 2013 02:39:37 UTC

Number Systems

Contents
Articles

Two's complement 1
Ones' complement 10
Binary-coded decimal 14
Gray code 24
Hexadecimal 39
Octal 50
Binary number 55

References
Article Sources and Contributors 70
Image Sources, Licenses and Contributors 72

Article Licenses
License 73

Two's complement 1

Two's complement
Two's complement is a mathematical operation on binary numbers, as well as a binary signed number
representation based on this operation.
The two's complement of an N-bit number is defined as the complement with respect to 2N, in other words the result
of subtracting the number from 2N. This is also equivalent to taking the ones' complement and then adding one, since
the sum of a number and its ones' complement is all 1 bits. The two's complement of a number behaves like the
negative of the original number in most arithmetic, and positive and negative numbers can coexist in a natural way.
In two's-complement representation, negative numbers are represented by the two's complement of their absolute
value;[1] in general, negation (reversing the sign) is performed by taking the two's complement. This system is the
most common method of representing signed integers on computers.[2] An N-bit two's-complement numeral system
can represent every integer in the range −(2N − 1) to +(2N − 1 − 1) while ones' complement can only represent integers
in the range −(2N − 1 − 1) to +(2N − 1 − 1).
The two's-complement system has the advantage that the fundamental arithmetic operations of addition, subtraction,
and multiplication are identical to those for unsigned binary numbers (as long as the inputs are represented in the
same number of bits and any overflow beyond those bits is discarded from the result). This property makes the
system both simpler to implement and capable of easily handling higher precision arithmetic. Also, zero has only a
single representation, obviating the subtleties associated with negative zero, which exists in ones'-complement
systems.
The method of complements can also be applied in base-10 arithmetic, using ten's complements by analogy with
two's complements.

Bits Unsigned value 2's complement value

0000 0000 0 0

0000 0001 1 1

0000 0010 2 2

0111 1110 126 126

0111 1111 127 127

1000 0000 128 −128

1000 0001 129 −127

1000 0010 130 −126

1111 1110 254 −2

1111 1111 255 −1

Potential ambiguities of terminology
One should be cautious when using the term two's complement, as it can mean either a number format or a
mathematical operator. For example, 0111 represents decimal 7 in two's-complement notation, but the two's
complement of 7 in a 4-bit register is actually the "1001" bit string (the same as represents 9 = 24 − 7 in unsigned
arithmetics) which is the two's complement representation of −7. The statement "convert x to two's complement"
may be ambiguous, since it could describe either the process of representing x in two's-complement notation
without changing its value, or the calculation of the two's complement, which is the arithmetic negative of x if two's
complement representation is used.

http://en.wikipedia.org/w/index.php?title=Mathematical_operation
http://en.wikipedia.org/w/index.php?title=Signed_number_representation
http://en.wikipedia.org/w/index.php?title=Signed_number_representation
http://en.wikipedia.org/w/index.php?title=Additive_inverse
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Addition
http://en.wikipedia.org/w/index.php?title=Subtraction
http://en.wikipedia.org/w/index.php?title=Multiplication
http://en.wikipedia.org/w/index.php?title=Arithmetic_overflow
http://en.wikipedia.org/w/index.php?title=Zero
http://en.wikipedia.org/w/index.php?title=Negative_zero
http://en.wikipedia.org/w/index.php?title=Method_of_complements
http://en.wikipedia.org/w/index.php?title=Nibble
http://en.wikipedia.org/w/index.php?title=Bit_string
http://en.wikipedia.org/w/index.php?title=Additive_inverse

Two's complement 2

Converting from two's complement representation
A two's-complement number system encodes positive and negative numbers in a binary number representation. The
weight of each bit is a power of two, except for the most significant bit, whose weight is the negative of the
corresponding power of two.
The value w of an N-bit integer is given by the following formula:

The most significant bit determines the sign of the number and is sometimes called the sign bit. Unlike in
sign-and-magnitude representation, the sign bit also has the weight −(2N − 1) shown above. Using N bits, all integers
from −(2N − 1) to 2N − 1 − 1 can be represented.

Converting to two's complement representation
In two's complement notation, a non-negative number is represented by its ordinary binary representation; in this
case, the most significant bit is 0. Though, the range of numbers represented is not the same as with unsigned binary
numbers. For example, an 8-bit unsigned number can represent the values 0 to 255 (11111111). However a two's
complement 8-bit number can only represent positive integers from 0 to 127 (01111111), because the rest of the bit
combinations with the most significant bit as '1' represent the negative integers −1 to −128.
The two's complement operation is the additive inverse operation, so negative numbers are represented by the two's
complement of the absolute value.

From the ones' complement
To get the two's complement of a binary number, the bits are inverted, or "flipped", by using the bitwise NOT
operation; the value of 1 is then added to the resulting value, ignoring the overflow which occurs when taking the
two's complement of 0.
For example, using 1 byte (= 2 nibbles = 8 bits), the decimal number 5 is represented by

0000 01012
The most significant bit is 0, so the pattern represents a non-negative value. To convert to −5 in two's-complement
notation, the bits are inverted; 0 becomes 1, and 1 becomes 0:

1111 1010
At this point, the numeral is the ones' complement of the decimal value 5. To obtain the two's complement, 1 is
added to the result, giving:

1111 1011
The result is a signed binary number representing the decimal value −5 in two's-complement form. The most
significant bit is 1, so the value represented is negative.
The two's complement of a negative number is the corresponding positive value. For example, inverting the bits of
−5 (above) gives:

0000 0100
And adding one gives the final value:

0000 0101
The two's complement of zero is zero: inverting gives all ones, and adding one changes the ones back to zeros (since
the overflow is ignored). Furthermore, the two's complement of the most negative number representable (e.g. a one
as the most-significant bit and all other bits zero) is itself. Hence, there appears to be an 'extra' negative number.

http://en.wikipedia.org/w/index.php?title=Most_significant_bit
http://en.wikipedia.org/w/index.php?title=Sign_bit
http://en.wikipedia.org/w/index.php?title=Sign-and-magnitude
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Additive_inverse
http://en.wikipedia.org/w/index.php?title=Absolute_value
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Bitwise_NOT
http://en.wikipedia.org/w/index.php?title=Nibble

Two's complement 3

Subtraction from 2N

The sum of a number and its ones' complement is an N-bit word with all 1 bits, which is 2N − 1. Then adding a
number to its two's complement results in the N lowest bits set to 0 and the carry bit 1, where the latter has the
weight 2N. Hence, in the unsigned binary arithmetic the value of two's-complement negative number x* of a
positive x satisfies the equality x* = 2N − x.[3]

For example, to find the 4-bit representation of −5 (subscripts denote the base of the representation):

x = 510 therefore x = 01012
Hence, with N = 4:

x* = 2N − x = 24 − 510 = 100002 − 01012 = 10112
The calculation can be done entirely in base 10, converting to base 2 at the end:

x* = 2N − x = 24 − 510 = 1110 = 10112

Working from LSB towards MSB
A shortcut to manually convert a binary number into its two's complement is to start at the least significant bit (LSB),
and copy all the zeros (working from LSB toward the most significant bit) until the first 1 is reached; then copy
that 1, and flip all the remaining bits. This shortcut allows a person to convert a number to its two's complement
without first forming its ones' complement. For example: the two's complement of "0011 1100" is "1100 0100",
where the underlined digits were unchanged by the copying operation (while the rest of the digits were flipped).
In computer circuitry, this method is no faster than the "complement and add one" method; both methods require
working sequentially from right to left, propagating logic changes. The method of complementing and adding one
can be sped up by a standard carry look-ahead adder circuit; the LSB towards MSB method can be sped up by a
similar logic transformation.

Sign extension

Decimal 7-bit notation 8-bit notation

−42 1010110 1101 0110

42 0101010 0010 1010

sign-bit repetition in 7 and 8-bit integers using two's-complement

When turning a two's-complement number with a certain number of bits into one with more bits (e.g., when copying
from a 1 byte variable to a two byte variable), the most-significant bit must be repeated in all the extra bits and lower
bits.
Some processors have instructions to do this in a single instruction. On other processors a conditional must be used
followed with code to set the relevant bits or bytes.
Similarly, when a two's-complement number is shifted to the right, the most-significant bit, which contains
magnitude and the sign information, must be maintained. However when shifted to the left, a 0 is shifted in. These
rules preserve the common semantics that left shifts multiply the number by two and right shifts divide the number
by two.
Both shifting and doubling the precision are important for some multiplication algorithms. Note that unlike addition
and subtraction, precision extension and right shifting are done differently for signed vs unsigned numbers.

http://en.wikipedia.org/w/index.php?title=Radix
http://en.wikipedia.org/w/index.php?title=Least_significant_bit
http://en.wikipedia.org/w/index.php?title=Carry_look-ahead_adder

Two's complement 4

The most negative number
With only one exception, started with any number in two's-complement representation, if all the bits are flipped and
1 added, the two's-complement representation of the negative of that number is obtained. Positive 12 becomes
negative 12, positive 5 becomes negative 5, zero becomes zero(+overflow), etc.

−128 1000 0000

invert bits 0111 1111

add one 1000 0000

The two's complement of −128 results in the same 8-bit binary number.

The two's complement of the minimum number in the range will not have the desired effect of negating the number.
For example, the two's complement of −128 in an 8-bit system results in the same binary number. This is because a
positive value of 128 cannot be represented with an 8-bit signed binary numeral. Note that this is detected as an
overflow condition since there was a carry into but not out of the most-significant bit. This can lead to unexpected
bugs in that an unchecked implementation of absolute value could return a negative number in the case of the
minimum negative. The abs family of integer functions in C typically has this behaviour. This is also true for Java.[4]

In this case it is for the developer to decide if there will be a check for the minimum negative value before the call of
the function.
The most negative number in two's complement is sometimes called "the weird number," because it is the only
exception.[5][6]

Although the number is an exception, it is a valid number in regular two's complement systems. All arithmetic
operations work with it both as an operand and (unless there was an overflow) a result.

Why it works
Given a set of all possible N-bit values, we can assign the lower (by binary value) half to be the integers from 0 to
(2N − 1 − 1) inclusive and the upper half to be −2N − 1 to −1 inclusive. The upper half can be used to represent
negative integers from −2N − 1 to −1 because, under addition modulo 2N they behave the same way as those negative
integers. That is to say that because i + j mod 2N = i + (j + 2N) mod 2N any value in the set { j + k 2N | k is an integer }
can be used in place of j.
For example, with eight bits, the unsigned bytes are 0 to 255. Subtracting 256 from the top half (128 to 255) yields
the signed bytes −128 to −1.
The relationship to two's complement is realised by noting that 256 = 255 + 1, and (255 − x) is the ones' complement
of x.

Decimal Two's complement

127 0111 1111

64 0100 0000

1 0000 0001

0 0000 0000

−1 1111 1111

−64 1100 0000

−127 1000 0001

−128 1000 0000

Some special numbers to note

http://en.wikipedia.org/w/index.php?title=Absolute_value
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Signed_number_representations

Two's complement 5

Example
−95 modulo 256 is equivalent to 161 since

−95 + 256
= −95 + 255 + 1
= 255 − 95 + 1
= 160 + 1
= 161

 1111 1111 255

− 0101 1111 − 95
=========== =====

 1010 0000 (ones' complement) 160

+ 1 + 1

=========== =====

 1010 0001 (two's complement) 161

Two's complement Decimal

0111 7

0110 6

0101 5

0100 4

0011 3

0010 2

0001 1

0000 0

1111 −1

1110 −2

1101 −3

1100 −4

1011 −5

1010 −6

1001 −7

1000 −8

Two's complement using a 4-bit integer

Fundamentally, the system represents negative integers by counting backward and wrapping around. The boundary
between positive and negative numbers is arbitrary, but the de facto rule is that all negative numbers have a left-most
bit (most significant bit) of one. Therefore, the most positive 4-bit number is 0111 (7) and the most negative is 1000
(−8). Because of the use of the left-most bit as the sign bit, the absolute value of the most negative number (|−8| = 8)
is too large to represent. For example, an 8-bit number can only represent every integer from −128 to 127 (28 − 1 =
128) inclusive. Negating a two's complement number is simple: Invert all the bits and add one to the result. For
example, negating 1111, we get 0000 + 1 = 1. Therefore, 1111 must represent −1.

http://en.wikipedia.org/w/index.php?title=Modulo_arithmetic
http://en.wikipedia.org/w/index.php?title=Most_significant_bit

Two's complement 6

The system is useful in simplifying the implementation of arithmetic on computer hardware. Adding 0011 (3) to
1111 (−1) at first seems to give the incorrect answer of 10010. However, the hardware can simply ignore the
left-most bit to give the correct answer of 0010 (2). Overflow checks still must exist to catch operations such as
summing 0100 and 0100.
The system therefore allows addition of negative operands without a subtraction circuit and a circuit that detects the
sign of a number. Moreover, that addition circuit can also perform subtraction by taking the two's complement of a
number (see below), which only requires an additional cycle or its own adder circuit. To perform this, the circuit
merely pretends an extra left-most bit of 1 exists.

Arithmetic operations

Addition
Adding two's-complement numbers requires no special processing if the operands have opposite signs: the sign of
the result is determined automatically. For example, adding 15 and −5:

 11111 111 (carry)

 0000 1111 (15)

+ 1111 1011 (−5)
==================

 0000 1010 (10)

This process depends upon restricting to 8 bits of precision; a carry to the (nonexistent) 9th most significant bit is
ignored, resulting in the arithmetically correct result of 1010.
The last two bits of the carry row (reading right-to-left) contain vital information: whether the calculation resulted in
an arithmetic overflow, a number too large for the binary system to represent (in this case greater than 8 bits). An
overflow condition exists when these last two bits are different from one another. As mentioned above, the sign of
the number is encoded in the MSB of the result.
In other terms, if the left two carry bits (the ones on the far left of the top row in these examples) are both 1s or both
0s, the result is valid; if the left two carry bits are "1 0" or "0 1", a sign overflow has occurred. Conveniently, an
XOR operation on these two bits can quickly determine if an overflow condition exists. As an example, consider
the signed 4-bit addition of 7 and 3:

 0111 (carry)

 0111 (7)

+ 0011 (3)

=============

 1010 (−6) invalid!

In this case, the far left two (MSB) carry bits are "01", which means there was a two's-complement addition
overflow. That is, 10102 = 1010 is outside the permitted range of −8 to 7.
In general, any two N-bit numbers may be added without overflow, by first sign-extending both of them to N + 1 bits,
and then adding as above. The N + 1 bits result is large enough to represent any possible sum (N = 5 two's
complement can represent values in the range −16 to 15) so overflow will never occur. It is then possible, if desired,
to 'truncate' the result back to N bits while preserving the value if and only if the discarded bit is a proper sign
extension of the retained result bits. This provides another method of detecting overflow—which is equivalent to the
method of comparing the carry bits—but which may be easier to implement in some situations, because it does not
require access to the internals of the addition.

http://en.wikipedia.org/w/index.php?title=Carry_flag
http://en.wikipedia.org/w/index.php?title=Arithmetic_overflow
http://en.wikipedia.org/w/index.php?title=XOR

Two's complement 7

Subtraction
Computers usually use the method of complements to implement subtraction. Using complements for subtraction is
closely related to using complements for representing negative numbers, since the combination allows all signs of
operands and results; direct subtraction works with two's-complement numbers as well. Like addition, the advantage
of using two's complement is the elimination of examining the signs of the operands to determine if addition or
subtraction is needed. For example, subtracting −5 from 15 is really adding 5 to 15, but this is hidden by the
two's-complement representation:

 11110 000 (borrow)

 0000 1111 (15)

− 1111 1011 (−5)
===========

 0001 0100 (20)

Overflow is detected the same way as for addition, by examining the two leftmost (most significant) bits of the
borrows; overflow has occurred if they are different.
Another example is a subtraction operation where the result is negative: 15 − 35 = −20:

 11100 000 (borrow)

 0000 1111 (15)

− 0010 0011 (35)
===========

 1110 1100 (−20)

As for addition, overflow in subtraction may be avoided (or detected after the operation) by first sign-extending both
inputs by an extra bit.

Multiplication
The product of two N-bit numbers requires 2N bits to contain all possible values. If the precision of the two, two's
complement operands is doubled before the multiplication, direct multiplication (discarding any excess bits beyond
that precision) will provide the correct result. For example, take 6 × −5 = −30. First, the precision is extended from 4
bits to 8. Then the numbers are multiplied, discarding the bits beyond 8 (shown by 'x'):

 00000110 (6)

 * 11111011 (−5)
 ============

 110

 1100

 00000

 110000

 1100000

 11000000

 x10000000

 xx00000000

 ============

 xx11100010

This is very inefficient; by doubling the precision ahead of time, all additions must be double-precision and at least
twice as many partial products are needed than for the more efficient algorithms actually implemented in computers.

http://en.wikipedia.org/w/index.php?title=Method_of_complements

Two's complement 8

Some multiplication algorithms are designed for two's complement, notably Booth's multiplication algorithm.
Methods for multiplying sign-magnitude numbers don't work with two's-complement numbers without adaptation.
There isn't usually a problem when the multiplicand (the one being repeatedly added to form the product) is
negative; the issue is setting the initial bits of the product correctly when the multiplier is negative. Two methods for
adapting algorithms to handle two's-complement numbers are common:
• First check to see if the multiplier is negative. If so, negate (i.e., take the two's complement of) both operands

before multiplying. The multiplier will then be positive so the algorithm will work. Because both operands are
negated, the result will still have the correct sign.

• Subtract the partial product resulting from the MSB (pseudo sign bit) instead of adding it like the other partial
products. This method requires the multiplicand's sign bit to be extended by one position, being preserved during
the shift right actions.[7]

As an example of the second method, take the common add-and-shift algorithm for multiplication. Instead of shifting
partial products to the left as is done with pencil and paper, the accumulated product is shifted right, into a second
register that will eventually hold the least significant half of the product. Since the least significant bits are not
changed once they are calculated, the additions can be single precision, accumulating in the register that will
eventually hold the most significant half of the product. In the following example, again multiplying 6 by −5, the two
registers and the extended sign bit are separated by "|":

 0 0110 (6) (multiplicand with extended sign bit)

 × 1011 (−5) (multiplier)
 =|====|====

 0|0110|0000 (first partial product (rightmost bit is 1))

 0|0011|0000 (shift right, preserving extended sign bit)

 0|1001|0000 (add second partial product (next bit is 1))

 0|0100|1000 (shift right, preserving extended sign bit)

 0|0100|1000 (add third partial product: 0 so no change)

 0|0010|0100 (shift right, preserving extended sign bit)

 1|1100|0100 (subtract last partial product since it's from sign bit)

 1|1110|0010 (shift right, preserving extended sign bit)

 |1110|0010 (discard extended sign bit, giving the final answer, −30)

Comparison (ordering)
Comparison is often implemented with a dummy subtraction, where the flags in the computer's status register are
checked, but the main result is ignored. The zero flag indicates if two values compared equal. If the exclusive-or of
the sign and overflow flags is 1, the subtraction result was less than zero, otherwise the result was zero or greater.
These checks are often implemented in computers in conditional branch instructions.
Unsigned binary numbers can be ordered by a simple lexicographic ordering, where the bit value 0 is defined as less
than the bit value 1. For two's complement values, the meaning of the most significant bit is reversed (i.e. 1 is less
than 0).
The following algorithm (for an n-bit two's complement architecture) sets the result register R to −1 if A < B, to +1
if A > B, and to 0 if A and B are equal:

Reversed comparison of sign bit:

if A(n-1) == 0 and B(n-1) == 1 then

 R := +1

 break

 else if A(n-1) == 1 and B(n-1) == 0 then

http://en.wikipedia.org/w/index.php?title=Booth%27s_multiplication_algorithm
http://en.wikipedia.org/w/index.php?title=Least_significant_bit
http://en.wikipedia.org/w/index.php?title=Comparison_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Status_register
http://en.wikipedia.org/w/index.php?title=Zero_flag
http://en.wikipedia.org/w/index.php?title=Sign_flag
http://en.wikipedia.org/w/index.php?title=Overflow_flag
http://en.wikipedia.org/w/index.php?title=Conditional_branch
http://en.wikipedia.org/w/index.php?title=Lexicographic_ordering

Two's complement 9

 R := -1

 break

 end

Comparison of remaining bits:

for i = n-2...0 do

 if A(i) == 0 and B(i) == 1 then

 R := -1

 break

 else if A(i) == 1 and B(i) == 0 then

 R := +1

 break

 end

end

R := 0

Two's complement and universal algebra
In a classic HAKMEM published by the MIT AI Lab in 1972, Bill Gosper noted that whether or not a machine's
internal representation was two's-complement could be determined by summing the successive powers of two. In a
flight of fancy, he noted that the result of doing this algebraically indicated that "algebra is run on a machine (the
universe) which is two's-complement."[8]

Gosper's end conclusion is not necessarily meant to be taken seriously, and it is akin to a mathematical joke. The
critical step is "...110 = ...111 − 1", i.e., "2X = X − 1", and thus X = ...111 = −1. This presupposes a method by which
an infinite string of 1s is considered a number, which requires an extension of the finite place-value concepts in
elementary arithmetic. It is meaningful either as part of a two's-complement notation for all integers, as a typical
2-adic number, or even as one of the generalized sums defined for the divergent series of real numbers 1 + 2 + 4 + 8
+ ···.[9] Digital arithmetic circuits, idealized to operate with infinite (extending to positive powers of 2) bit strings,
produce 2-adic addition and multiplication compatible with two's complement representation.[10] Continuity of
binary arithmetical and bitwise operations in 2-adic metric also has some use in cryptography.[11]

References
[1] David J. Lilja and Sachin S. Sapatnekar, Designing Digital Computer Systems with Verilog, Cambridge University Press, 2005 online (http:/ /

books. google. com/ books?vid=ISBN052182866X& id=5BvW0hYhxkQC& pg=PA37& lpg=PA37& ots=l-E0VjyPt8& dq="two's+
complement+ arithmetic"& sig=sS5_swrfrzcQI2nHWest75sIjgg)

[2][2] E.g. "Signed integers are two's complement binary values that can be used to represent both positive and negative integer values.", Section
4.2.1 in Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture, November 2006

[3] For x = 0 we have 2N − 0 = 2N, which is equivalent to 0* = 0 modulo 2N (i.e. after restricting to N least significant bits).
[4] "Math (Java Platform SE 7)" (http:/ / docs. oracle. com/ javase/ 7/ docs/ api/ java/ lang/ Math. html). .
[5] Reynald Affeldt and Nicolas Marti. "Formal Verification of Arithmetic Functions in SmartMIPS Assembly" (http:/ / www. ipl. t. u-tokyo. ac.

jp/ jssst2006/ papers/ Affeldt. pdf). .
[6] google.com (http:/ / books. google. com/ books?id=5X7JV5-n0FIC& pg=PA19& dq="weird+ number"+ binary); "Digital Design and

Computer Architecture", by David Harris, David Money Harris, Sarah L. Harris. 2007. Page 18.
[7] Wakerly, John F. (2000). Digital Design Principles & Practices (3rd ed.). Prentice Hall. p. 47. ISBN 0-13-769191-2.
[8] Hakmem - Programming Hacks - Draft, Not Yet Proofed (http:/ / www. inwap. com/ pdp10/ hbaker/ hakmem/ hacks. html#item154)
[9] For the summation of 1 + 2 + 4 + 8 + ··· without recourse to the 2-adic metric, see Hardy, G.H. (1949). Divergent Series. Clarendon Press.

LCC QA295 .H29 1967. (pp. 7–10)
[10] Vuillemin, Jean (1993). On circuits and numbers (http:/ / www. hpl. hp. com/ techreports/ Compaq-DEC/ PRL-RR-25. pdf). Paris: Digital

Equipment Corp.. p. 19. . Retrieved 2012-01-24., Chapter 7, especially 7.3 for multiplication.

http://en.wikipedia.org/w/index.php?title=HAKMEM
http://en.wikipedia.org/w/index.php?title=MIT_AI_Lab
http://en.wikipedia.org/w/index.php?title=Bill_Gosper
http://en.wikipedia.org/w/index.php?title=Mathematical_joke
http://en.wikipedia.org/w/index.php?title=P-adic_number
http://en.wikipedia.org/w/index.php?title=Divergent_series
http://en.wikipedia.org/w/index.php?title=1_%2B_2_%2B_4_%2B_8_%2B_%E2%80%A6
http://en.wikipedia.org/w/index.php?title=1_%2B_2_%2B_4_%2B_8_%2B_%E2%80%A6
http://en.wikipedia.org/w/index.php?title=Continuous_function
http://en.wikipedia.org/w/index.php?title=Bitwise_operation
http://en.wikipedia.org/w/index.php?title=Metric_space
http://books.google.com/books?vid=ISBN052182866X&id=5BvW0hYhxkQC&pg=PA37&lpg=PA37&ots=l-E0VjyPt8&dq=%22two%27s+complement+arithmetic%22&sig=sS5_swrfrzcQI2nHWest75sIjgg
http://books.google.com/books?vid=ISBN052182866X&id=5BvW0hYhxkQC&pg=PA37&lpg=PA37&ots=l-E0VjyPt8&dq=%22two%27s+complement+arithmetic%22&sig=sS5_swrfrzcQI2nHWest75sIjgg
http://books.google.com/books?vid=ISBN052182866X&id=5BvW0hYhxkQC&pg=PA37&lpg=PA37&ots=l-E0VjyPt8&dq=%22two%27s+complement+arithmetic%22&sig=sS5_swrfrzcQI2nHWest75sIjgg
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://www.ipl.t.u-tokyo.ac.jp/jssst2006/papers/Affeldt.pdf
http://www.ipl.t.u-tokyo.ac.jp/jssst2006/papers/Affeldt.pdf
http://books.google.com/books?id=5X7JV5-n0FIC&pg=PA19&dq=%22weird+number%22+binary
http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item154
http://en.wikipedia.org/w/index.php?title=G._H._Hardy
http://www.hpl.hp.com/techreports/Compaq-DEC/PRL-RR-25.pdf
http://en.wikipedia.org/w/index.php?title=Digital_Equipment_Corp.
http://en.wikipedia.org/w/index.php?title=Digital_Equipment_Corp.

Two's complement 10

[11] Anashin, Vladimir; Bogdanov, Andrey; Kizhvatov, Ilya (2007). "ABC Stream Cipher" (http:/ / crypto. rsuh. ru/). Russian State University
for the Humanities. . Retrieved 24 January 2012.

Further reading
• Koren, Israel (2002). Computer Arithmetic Algorithms. A.K. Peters. ISBN 1-56881-160-8.
• Flores, Ivan (1963). The Logic of Computer Arithmetic. Prentice-Hall.

External links
• Tutorial: Two's Complement Numbers (http:/ / www. vb-helper. com/ tutorial_twos_complement. html)
• Two's complement array multiplier JavaScript simulator (http:/ / www. ecs. umass. edu/ ece/ koren/ arith/

simulator/ ArrMlt/)
• Javascript converter for 2's complement to decimal and vice versa (http:/ / prozessorsimulation. klickagent. ch/

?lang=en& convertor=true)

Ones' complement
The ones' complement of a binary number is defined as the value obtained by inverting all the bits in the binary
representation of the number (swapping 0's for 1's and vice-versa). The ones' complement of the number then
behaves like the negative of the original number in some arithmetic operations. To within a constant (of −1), the
ones' complement behaves like the negative of the original number with binary addition. However, unlike two's
complement, these numbers have not seen widespread use because of issues such as the offset of −1, that negating
zero results in a distinct negative zero bit pattern, less simplicity with arithmetic borrowing, etc.
A ones' complement system or ones' complement arithmetic is a system in which negative numbers are
represented by the arithmetic negative of the value. In such a system, a number is negated (converted from positive
to negative or vice versa) by computing its ones' complement. An N-bit ones' complement numeral system can only
represent integers in the range −(2N−1−1) to 2N−1−1 while two's complement can express −2N−1 to 2N−1−1.
The ones' complement binary numeral system is characterized by the bit complement of any integer value being the
arithmetic negative of the value. That is, inverting all of the bits of a number (the logical complement) produces the
same result as subtracting the value from 0.

History
The early days of digital computing were marked by a lot of competing ideas about both hardware technology and
mathematics technology (numbering systems). One of the great debates was the format of negative numbers, with
some of the era's most expert people having very strong and different opinions. One camp supported two's
complement, the system that is dominant today. Another camp supported ones' complement, where any positive
value is made into its negative equivalent by inverting all of the bits in a word. A third group supported "sign &
magnitude", where a value is changed from positive to negative simply by toggling the word's sign (high order) bit.
There were arguments for and against each of the systems. Sign & magnitude allowed for easier tracing of memory
dumps (a common process 40 years ago) as numeric values tended to use fewer 1 bits. Internally, these systems did
ones' complement math so numbers would have to be converted to ones' complement values when they were
transmitted from a register to the math unit and then converted back to sign-magnitude when the result was
transmitted back to the register. The electronics required more gates than the other systems – a key concern when the
cost and packaging of discrete transistors was critical. IBM was one of the early supporters of sign-magnitude, with
their 7090 (709x series) computers perhaps the best known architecture to use it.

http://crypto.rsuh.ru/
http://en.wikipedia.org/w/index.php?title=Russian_State_University_for_the_Humanities
http://en.wikipedia.org/w/index.php?title=Russian_State_University_for_the_Humanities
http://www.vb-helper.com/tutorial_twos_complement.html
http://www.ecs.umass.edu/ece/koren/arith/simulator/ArrMlt/
http://www.ecs.umass.edu/ece/koren/arith/simulator/ArrMlt/
http://prozessorsimulation.klickagent.ch/?lang=en&convertor=true
http://prozessorsimulation.klickagent.ch/?lang=en&convertor=true
http://en.wikipedia.org/w/index.php?title=Binary_addition
http://en.wikipedia.org/w/index.php?title=Carry_%28arithmetic%29
http://en.wikipedia.org/w/index.php?title=Numeral_system
http://en.wikipedia.org/w/index.php?title=Bit_complement
http://en.wikipedia.org/w/index.php?title=IBM_7090

Ones' complement 11

Ones' complement allowed for somewhat simpler hardware designs as there was no need to convert values when
passed to/from the math unit. But it also shared an undesirable characteristic with sign-magnitude – the ability to
represent negative zero (−0). Negative zero behaves exactly like positive zero; when used as an operand in any
calculation, the result will be the same whether an operand is positive or negative zero. The disadvantage, however,
is that the existence of two forms of the same value necessitates two rather than a single comparison when checking
for equality with zero. Ones' complement subtraction can also result in an end-around borrow (described below). It
can be argued that this makes the addition/subtraction logic more complicated or that it makes it simpler as a
subtraction requires simply inverting the bits of the second operand as it's passed to the adder. The CDC 6000 series
and UNIVAC 1100 series computers were based on ones' complement.
Two's complement is the easiest to implement in hardware, which may be the ultimate reason for its widespread
popularity. Remember that processors on the early mainframes often consisted of thousands of transistors –
eliminating a significant number of transistors was a significant cost savings. The architects of the early integrated
circuit based CPUs (Intel 8080, etc.) chose to use two's complement math. As IC technology advanced, virtually all
adopted two's complement technology. Intel, AMD, and IBM POWER chips are all two's complement.

Number representation
Positive numbers are the same simple, binary system used by two's complement and sign-magnitude. Negative
values are the bit complement of the corresponding positive value. The largest positive value is characterized by the
sign (high-order) bit being off (0) and all other bits being on (1). The smallest negative value is characterized by the
sign bit being 1, and all other bits being 0. The table below shows all possible values in a 4-bit system, from −7 to
+7.

 + −

 0 0000 1111 —Note that +0 and −0 return TRUE when tested for zero, FALSE when tested for non-zero.

 1 0001 1110

 2 0010 1101

 3 0011 1100

 4 0100 1011

 5 0101 1010

 6 0110 1001

 7 0111 1000

Basics
Adding two values is straight forward. Simply align the values on the least significant bit and add, propagating any
carry to the bit one position left. If the carry extends past the end of the word it is said to have "wrapped around", a
condition called an "end-around carry". When this occurs, the bit must be added back in at the right-most bit. This
phenomenon does not occur in two's complement arithmetic.

 0001 0110 22

+ 0000 0011 3

=========== ====

 0001 1001 25

Subtraction is similar, except that borrows, rather than carries, are propagated to the left. If the borrow extends past
the end of the word it is said to have "wrapped around", a condition called an "end-around borrow". When this
occurs, the bit must be subtracted from the right-most bit. This phenomenon does not occur in two's complement
arithmetic.

http://en.wikipedia.org/w/index.php?title=CDC_6000_series
http://en.wikipedia.org/w/index.php?title=UNIVAC_1100
http://en.wikipedia.org/w/index.php?title=Intel_8080
http://en.wikipedia.org/w/index.php?title=IBM_POWER

Ones' complement 12

 0000 0110 6

− 0001 0011 19

=========== ====

1 1111 0011 −12 —An end-around borrow is produced, and the sign bit of the intermediate result is 1.

− 0000 0001 1 —Subtract the end-around borrow from the result.

=========== ====

 1111 0010 −13 —The correct result (6 − 19 = -13)

It is easy to demonstrate that the bit complement of a positive value is the negative magnitude of the positive value.
The computation of 19 + 3 produces the same result as 19 − (−3).
Add 3 to 19.

 0001 0011 19

+ 0000 0011 3

=========== ====

 0001 0110 22

Subtract −3 from 19.

 0001 0011 19

− 1111 1100 −3
=========== ====

1 0001 0111 23 —An end-around borrow is produced.

− 0000 0001 1 —Subtract the end-around borrow from the result.

=========== ====

 0001 0110 22 —The correct result (19 − (−3) = 22).

Negative zero
Negative zero is the condition where all bits in a signed word are 1. This follows the ones' complement rules that a
value is negative when the left-most bit is 1, and that a negative number is the bit complement of the number's
magnitude. The value also behaves as zero when computing. Adding or subtracting negative zero to/from another
value produces the original value.
Adding negative zero:

 0001 0110 22

+ 1111 1111 −0
=========== ====

1 0001 0101 21 —An end-around carry is produced.

+ 0000 0001 1

=========== ====

 0001 0110 22 —The correct result (22 + (−0) = 22)

Subtracting negative zero:

 0001 0110 22

− 1111 1111 −0
=========== ====

1 0001 0111 23 —An end-around borrow is produced.

− 0000 0001 1
=========== ====

Ones' complement 13

 0001 0110 22 —The correct result (22 − (−0) = 22)

Negative zero is easily produced in a 1's complement adder. Simply add the positive and negative of the same
magnitude.

 0001 0110 22

+ 1110 1001 −22
=========== ====

 1111 1111 −0 —Negative zero.

Although the math always produces the correct results, a side effect of negative zero is that software must test for
negative zero.

Avoiding negative zero
The generation of negative zero becomes a non-issue if addition is achieved with a complementing subtractor. The
first operand is passed to the subtract unmodified, the second operand is complemented, and the subtraction
generates the correct result, avoiding negative zero. The previous example added 22 and −22 and produced −0.

 0001 0110 22 0001 0110 22 1110 1001 −22 1110 1001 −22
+ 1110 1001 −22 − 0001 0110 22 + 0001 0110 22 − 1110 1001 −22
=========== ==== but =========== ==== likewise, =========== === but =========== ===

 1111 1111 −0 0000 0000 0 1111 1111 −0 0000 0000 0

The interesting "corner cases" are when one or both operands are zero and/or negative zero.

 0001 0010 18 0001 0010 18

− 0000 0000 0 − 1111 1111 −0
=========== ==== =========== ====

 0001 0010 18 1 0001 0011 19

 − 0000 0001 1
 =========== ====

 0001 0010 18

Subtracting +0 is trivial (as shown above). If the second operand is negative zero it is inverted and the original value
of the first operand is the result. Subtracting −0 is also trivial. The result can be only 1 of two cases. In case 1,
operand 1 is −0 so the result is produced simply by subtracting 1 from 1 at every bit position. In case 2, the
subtraction will generate a value that is 1 larger than operand 1 and an end around borrow. Completing the borrow
generates the same value as operand 1.
The only really interesting case is when both operands are plus or minus zero. Look at this example:

 0000 0000 0 0000 0000 0 1111 1111 −0 1111 1111 −0
+ 0000 0000 0 + 1111 1111 −0 + 0000 0000 0 + 1111 1111 −0
=========== ==== =========== ==== =========== ==== =========== ====

 0000 0000 0 1111 1111 −0 1111 1111 −0 1 1111 1110 −1
 + 0000 0001 1

 ==================

 1111 1111 −0

 0000 0000 0 0000 0000 0 1111 1111 −0 1111 1111 −0
− 1111 1111 −0 − 0000 0000 0 − 1111 1111 −0 − 0000 0000 0
=========== ==== =========== ==== =========== ==== =========== ====

Ones' complement 14

1 0000 0001 1 0000 0000 0 0000 0000 0 1111 1111 −0
− 0000 0001 1
=========== ====

 0000 0000 0

This example shows that of the 4 possible conditions when adding only ±0, an adder will produce −0 in three of
them. A complementing subtractor will produce −0 only when both operands are −0.

References
Donald Knuth: The Art of Computer Programming, Volume 2: Seminumerical Algorithms, chapter 4.1

Binary-coded decimal

A binary clock might use LEDs to express binary values. In this
clock, each column of LEDs shows a binary-coded decimal numeral

of the traditional sexagesimal time.

In computing and electronic systems, binary-coded
decimal (BCD) is a class of binary encodings of
decimal numbers where each decimal digit is
represented by a fixed number of bits, usually four or
eight, although other sizes (such as six bits) have been
used historically. Special bit patterns are sometimes
used for a sign or for other indications (e.g., error or
overflow).

In byte-oriented systems (i.e. most modern computers),
the term uncompressed BCD usually implies a full byte
for each digit (often including a sign), whereas packed
BCD typically encodes two decimal digits within a
single byte by taking advantage of the fact that four bits
are enough to represent the range 0 to 9. The precise
4-bit encoding may vary however, for technical
reasons, see Excess-3 for instance.

BCD's main virtue is a more accurate representation
and rounding of decimal quantities as well as an ease of
conversion into human-readable representations. As compared to binary positional systems, BCD's principal
drawbacks are a small increase in the complexity of the circuits needed to implement basic arithmetics and a slightly
less dense storage.

BCD was used in many early decimal computers. Although BCD is not as widely used as in the past, decimal
fixed-point and floating-point formats are still important and continue to be used in financial, commercial, and
industrial computing, where subtle conversion and rounding errors that are inherent to floating point binary
representations cannot be tolerated.[1]

http://en.wikipedia.org/w/index.php?title=The_Art_of_Computer_Programming
http://en.wikipedia.org/w/index.php?title=Binary_clock
http://en.wikipedia.org/w/index.php?title=Light-emitting_diode
http://en.wikipedia.org/w/index.php?title=Sexagesimal
http://en.wikipedia.org/w/index.php?title=File%3ABinary_clock.svg
http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Electronics
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Decimal
http://en.wikipedia.org/w/index.php?title=Numerical_digit
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Sign_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Byte
http://en.wikipedia.org/w/index.php?title=Excess-3
http://en.wikipedia.org/w/index.php?title=Positional_system
http://en.wikipedia.org/w/index.php?title=Decimal_computer
http://en.wikipedia.org/w/index.php?title=Fixed-point_arithmetic
http://en.wikipedia.org/w/index.php?title=Floating-point

Binary-coded decimal 15

Basics
As described in the introduction, BCD takes advantage of the fact that any one decimal numeral can be represented
by a four bit pattern:

Decimal
Digit

BCD
8 4 2 1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

As most computers store data in 8-bit bytes, it is possible to use one of the following methods to encode a BCD
number:
• Uncompressed: each numeral is encoded into one byte, with four bits representing the numeral and the remaining

bits having no significance.
• Packed: two numerals are encoded into a single byte, with one numeral in the least significant nibble (bits 0

through 3) and the other numeral in the most significant nibble (bits 4 through 7).
As an example, encoding the decimal number 91 using uncompressed BCD results in the following binary pattern
of two bytes:

 Decimal: 9 1

 Binary : 0000 1001 0000 0001

In packed BCD, the same number would fit into a single byte:

 Decimal: 9 1

 Binary : 1001 0001

Hence the numerical range for one uncompressed BCD byte is zero through nine inclusive, whereas the range for
one packed BCD is zero through ninety-nine inclusive.
To represent numbers larger than the range of a single byte any number of contiguous bytes may be used. For
example, to represent the decimal number 12345 in packed BCD, using big-endian format, a program would
encode as follows:

 Decimal: 1 2 3 4 5

 Binary : 0000 0001 0010 0011 0100 0101

Note that the most significant nibble of the most significant byte is zero, implying that the number is in actuality
012345. Also note how packed BCD is more efficient in storage usage as compared to uncompressed BCD;
encoding the same number in uncompressed format would consume 100 percent more storage.
Shifting and masking operations are used to pack or unpack a packed BCD digit. Other logical operations are used
to convert a numeral to its equivalent bit pattern or reverse the process.

http://en.wikipedia.org/w/index.php?title=Byte
http://en.wikipedia.org/w/index.php?title=Nibble
http://en.wikipedia.org/w/index.php?title=Big-endian
http://en.wikipedia.org/w/index.php?title=Logical_shift
http://en.wikipedia.org/w/index.php?title=Mask_%28computing%29
http://en.wikipedia.org/w/index.php?title=Bitwise_operation

Binary-coded decimal 16

BCD in Electronics
BCD is very common in electronic systems where a numeric value is to be displayed, especially in systems
consisting solely of digital logic, and not containing a microprocessor. By utilizing BCD, the manipulation of
numerical data for display can be greatly simplified by treating each digit as a separate single sub-circuit. This
matches much more closely the physical reality of display hardware—a designer might choose to use a series of
separate identical seven-segment displays to build a metering circuit, for example. If the numeric quantity were
stored and manipulated as pure binary, interfacing to such a display would require complex circuitry. Therefore, in
cases where the calculations are relatively simple working throughout with BCD can lead to a simpler overall system
than converting to binary.
The same argument applies when hardware of this type uses an embedded microcontroller or other small processor.
Often, smaller code results when representing numbers internally in BCD format, since a conversion from or to
binary representation can be expensive on such limited processors. For these applications, some small processors
feature BCD arithmetic modes, which assist when writing routines that manipulate BCD quantities.

Packed BCD
A common variation of the two-digits-per-byte encoding is called packed BCD (or simply packed decimal), which
has been in use since the 1960s or earlier and implemented in all IBM mainframe hardware since then. In most
representations, one or more bytes hold a decimal integer, where each of the two nibbles of each byte represent a
decimal digit, with the more significant digit in the upper half of each byte, and with leftmost byte (residing at the
lowest memory address) containing the most significant digits of the packed decimal value. The lower nibble of the
rightmost byte is usually used as the sign flag (although in some representations this nibble may be used as the least
significant digit if the packed decimal value does not have a sign at all, i.e., is purely unsigned). As an example, a
4-byte value consists of 8 nibbles, wherein the upper 7 nibbles store the digits of a 7-digit decimal value and the
lowest nibble indicates the sign of the decimal integer value.
Standard sign values are 1100 (hex C) for positive (+) and 1101 (D) for negative (−). This convention was derived
from abbreviations for accounting terms (Credit and Debit), as packed decimal coding was widely used in
accounting systems. Other allowed signs are 1010 (A) and 1110 (E) for positive and 1011 (B) for negative. Some
implementations also provide unsigned BCD values with a sign nibble of 1111 (F). ILE RPG uses 1111 (F) for
positive and 1101 (D) for negative.[2] In packed BCD, the number 127 is represented by 0001 0010 0111 1100
(127C) and −127 is represented by 0001 0010 0111 1101 (127D). Burroughs systems used 1101 (D) for negative,
and any other value was considered a positive sign value (the processors would normalize a positive sign to 1100
(C)).

Sign
Digit

BCD
8 4 2 1

Sign Notes

A 1 0 1 0 +

B 1 0 1 1 −

C 1 1 0 0 + Preferred

D 1 1 0 1 − Preferred

E 1 1 1 0 +

F 1 1 1 1 + Unsigned

No matter how many bytes wide a word is, there are always an even number of nibbles because each byte has two of
them. Therefore, a word of n bytes can contain up to (2n)−1 decimal digits, which is always an odd number of digits.
A decimal number with d digits requires ½(d+1) bytes of storage space.

http://en.wikipedia.org/w/index.php?title=Seven-segment_display
http://en.wikipedia.org/w/index.php?title=Nibble
http://en.wikipedia.org/w/index.php?title=Word_%28data_type%29

Binary-coded decimal 17

For example, a 4-byte (32-bit) word can hold seven decimal digits plus a sign, and can represent values ranging from
±9,999,999. Thus the number −1,234,567 is 7 digits wide and is encoded as:

0001 0010 0011 0100 0101 0110 0111 1101

1 2 3 4 5 6 7 −

(Note that, like character strings, the first byte of the packed decimal – with the most significant two digits – is
usually stored in the lowest address in memory, independent of the endianness of the machine.)
In contrast, a 4-byte binary two's complement integer can represent values from −2,147,483,648 to +2,147,483,647.
While packed BCD does not make optimal use of storage (about 1/6 of the memory used is wasted), conversion to
ASCII, EBCDIC, or the various encodings of Unicode is still trivial, as no arithmetic operations are required. The
extra storage requirements are usually offset by the need for the accuracy and compatibility with calculator or hand
calculation that fixed-point decimal arithmetic provides. Denser packings of BCD exist which avoid the storage
penalty and also need no arithmetic operations for common conversions.
Packed BCD is supported in the COBOL programming language as the "COMPUTATIONAL-3" (an IBM extension
adopted by many other compiler vendors) or "PACKED-DECIMAL" (part of the 1985 COBOL standard) data type.
Besides the IBM System/360 and later compatible mainframes, packed BCD was implemented in the native
instruction set of the original VAX processors from Digital Equipment Corporation and was the native format for the
Burroughs Corporation Medium Systems line of mainframes (descended from the 1950s Electrodata 200 series).

Fixed-point packed decimal
Fixed-point decimal numbers are supported by some programming languages (such as COBOL and PL/I). These
languages allow the programmer to specify an implicit decimal point in front of one of the digits. For example, a
packed decimal value encoded with the bytes 12 34 56 7C represents the fixed-point value +1,234.567 when the
implied decimal point is located between the 4th and 5th digits:

12 34 56 7C

12 34.56 7+

The decimal point is not actually stored in memory, as the packed BCD storage format does not provide for it. Its
location is simply known to the compiler and the generated code acts accordingly for the various arithmetic
operations.

Higher-density encodings
If a decimal digit requires four bits, then three decimal digits require 12 bits. However, since 210 (1,024) is greater
than 103 (1,000), if three decimal digits are encoded together, only 10 bits are needed. Two such encodings are
Chen-Ho encoding and Densely Packed Decimal. The latter has the advantage that subsets of the encoding encode
two digits in the optimal seven bits and one digit in four bits, as in regular BCD.

Zoned decimal
Some implementations, for example IBM mainframe systems, support zoned decimal numeric representations. Each
decimal digit is stored in one byte, with the lower four bits encoding the digit in BCD form. The upper four bits,
called the "zone" bits, are usually set to a fixed value so that the byte holds a character value corresponding to the
digit. EBCDIC systems use a zone value of 1111 (hex F); this yields bytes in the range F0 to F9 (hex), which are the
EBCDIC codes for the characters "0" through "9". Similarly, ASCII systems use a zone value of 0011 (hex 3), giving
character codes 30 to 39 (hex).

http://en.wikipedia.org/w/index.php?title=Endianness
http://en.wikipedia.org/w/index.php?title=ASCII
http://en.wikipedia.org/w/index.php?title=EBCDIC
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=BCD
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=VAX
http://en.wikipedia.org/w/index.php?title=Digital_Equipment_Corporation
http://en.wikipedia.org/w/index.php?title=Burroughs_Corporation
http://en.wikipedia.org/w/index.php?title=Fixed-point_arithmetic
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=PL/I
http://en.wikipedia.org/w/index.php?title=Chen-Ho_encoding
http://en.wikipedia.org/w/index.php?title=Densely_Packed_Decimal
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=EBCDIC
http://en.wikipedia.org/w/index.php?title=ASCII

Binary-coded decimal 18

For signed zoned decimal values, the rightmost (least significant) zone nibble holds the sign digit, which is the same
set of values that are used for signed packed decimal numbers (see above). Thus a zoned decimal value encoded as
the hex bytes F1 F2 D3 represents the signed decimal value −123:

F1 F2 D3

 1 2 −3

EBCDIC zoned decimal conversion table

BCD Digit Hexadecimal EBCDIC Character

0+ C0 A0 E0 F0 { (*) \ (*) 0

1+ C1 A1 E1 F1 A ~ (*) 1

2+ C2 A2 E2 F2 B s S 2

3+ C3 A3 E3 F3 C t T 3

4+ C4 A4 E4 F4 D u U 4

5+ C5 A5 E5 F5 E v V 5

6+ C6 A6 E6 F6 F w W 6

7+ C7 A7 E7 F7 G x X 7

8+ C8 A8 E8 F8 H y Y 8

9+ C9 A9 E9 F9 I z Z 9

0− D0 B0 } (*) ^ (*)

1− D1 B1 J

2− D2 B2 K

3− D3 B3 L

4− D4 B4 M

5− D5 B5 N

6− D6 B6 O

7− D7 B7 P

8− D8 B8 Q

9− D9 B9 R

(*) Note: These characters vary depending on the local character code page setting.

Fixed-point zoned decimal
Some languages (such as COBOL and PL/I) directly support fixed-point zoned decimal values, assigning an implicit
decimal point at some location between the decimal digits of a number. For example, given a six-byte signed zoned
decimal value with an implied decimal point to the right of the fourth digit, the hex bytes F1 F2 F7 F9 F5 C0
represent the value +1,279.50:

F1 F2 F7 F9 F5 C0

 1 2 7 9. 5 +0

http://en.wikipedia.org/w/index.php?title=Code_page
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=PL/I

Binary-coded decimal 19

IBM and BCD
IBM used the terms binary-coded decimal and BCD for 6-bit alphanumeric codes that represented numbers,
upper-case letters and special characters. Some variation of BCD alphamerics was used in most early IBM
computers, including the IBM 1620, IBM 1400 series, and non-Decimal Architecture members of the IBM 700/7000
series.
The IBM 1400 series were character-addressable machines, each location being six bits labeled B, A, 8, 4, 2 and 1,
plus an odd parity check bit (C) and a word mark bit (M). For encoding digits 1 through 9, B and A were zero and the
digit value represented by standard 4-bit BCD in bits 8 through 1. For most other characters bits B and A were
derived simply from the "12", "11", and "0" "zone punches" in the punched card character code, and bits 8 through 1
from the 1 through 9 punches. A "12 zone" punch set both B and A, an "11 zone" set B, and a "0 zone" (a 0 punch
combined with any others) set A. Thus the letter A, (12,1) in the punched card format, was encoded (B,A,1) and the
currency symbol $, (11,8,3) in the punched card, as (B,8,3). This allowed the circuitry to convert between the
punched card format and the internal storage format to be very simple with only a few special cases. One important
special case was digit 0, represented by a lone 0 punch in the card, and (8,2) in core memory. [3]

The memory of the IBM 1620 was organized into 6-bit addressable digits, the usual 8, 4, 2, 1 plus F, used as a flag
bit and C, an odd parity check bit. BCD alphamerics were encoded using digit pairs, with the "zone" in the
even-addressed digit and the "digit" in the odd-addressed digit, the "zone" being related to the 12, 11, and 0 "zone
punches" as in the 1400 series. Input/Output translation hardware converted between the internal digit pairs and the
external standard 6-bit BCD codes.
In the Decimal Architecture IBM 7070, IBM 7072, and IBM 7074 alphamerics were encoded using digit pairs (using
two-out-of-five code in the digits, not BCD) of the 10-digit word, with the "zone" in the left digit and the "digit" in
the right digit. Input/Output translation hardware converted between the internal digit pairs and the external standard
6-bit BCD codes.
With the introduction of System/360, IBM expanded 6-bit BCD alphamerics to 8-bit EBCDIC, allowing the addition
of many more characters (e.g., lowercase letters). A variable length Packed BCD numeric data type was also
implemented, providing machine instructions that performed arithmetic directly on packed decimal data.
On the IBM 1130 and 1800, packed BCD was supported in software by IBM's Commercial Subroutine Package.
Today, BCD data is still heavily used in IBM processors and databases, such as IBM DB2, mainframes, and Power6.
In these products, the BCD is usually zoned BCD (as in EBCDIC or ASCII), Packed BCD (two decimal digits per
byte), or "pure" BCD encoding (one decimal digit stored as BCD in the low four bits of each byte). All of these are
used within hardware registers and processing units, and in software.

Other computers and BCD
The Digital Equipment Corporation VAX-11 series included instructions that could perform arithmetic directly on
packed BCD data and convert between packed BCD data and other integer representations. The VAX's packed BCD
format was compatible with that on IBM System/360 and IBM's later compatible processors. The MicroVAX and
later VAX implementations dropped this ability from the CPU but retained code compatibility with earlier machines
by implementing the missing instructions in an operating system-supplied software library. This was invoked
automatically via exception handling when the no longer implemented instructions were encountered, so that
programs using them could execute without modification on the newer machines.
In more recent computers such capabilities are almost always implemented in software rather than the CPU's
instruction set, but BCD numeric data is still extremely common in commercial and financial applications.

http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Alphanumeric
http://en.wikipedia.org/w/index.php?title=IBM_1620
http://en.wikipedia.org/w/index.php?title=IBM_1400_series
http://en.wikipedia.org/w/index.php?title=IBM_700/7000_series%23Decimal_architecture_%287070/7072/7074%29
http://en.wikipedia.org/w/index.php?title=IBM_700/7000_series
http://en.wikipedia.org/w/index.php?title=IBM_700/7000_series
http://en.wikipedia.org/w/index.php?title=IBM_1400_series
http://en.wikipedia.org/w/index.php?title=IBM_1620
http://en.wikipedia.org/w/index.php?title=IBM_7070
http://en.wikipedia.org/w/index.php?title=IBM_7072
http://en.wikipedia.org/w/index.php?title=IBM_7074
http://en.wikipedia.org/w/index.php?title=Two-out-of-five_code
http://en.wikipedia.org/w/index.php?title=System/360
http://en.wikipedia.org/w/index.php?title=EBCDIC
http://en.wikipedia.org/w/index.php?title=IBM_1130
http://en.wikipedia.org/w/index.php?title=IBM_1800
http://en.wikipedia.org/w/index.php?title=IBM_DB2
http://en.wikipedia.org/w/index.php?title=Power6
http://en.wikipedia.org/w/index.php?title=Byte
http://en.wikipedia.org/w/index.php?title=Digital_Equipment_Corporation
http://en.wikipedia.org/w/index.php?title=VAX
http://en.wikipedia.org/w/index.php?title=Instruction_set

Binary-coded decimal 20

Addition with BCD
It is possible to perform addition in BCD by first adding in binary, and then converting to BCD afterwards.
Conversion of the simple sum of two digits can be done by adding 6 (that is, 16 – 10) when the five-bit result of
adding a pair of digits has a value greater than 9. For example:

1001 + 1000 = 10001

 9 + 8 = 17

Note that 10001 is the binary, not decimal, representation of the desired result. In BCD as in decimal, there cannot
exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to that sum and then the result is
treated as two nibbles:

10001 + 0110 = 00010111 => 0001 0111

 17 + 6 = 23 1 7

The two nibbles of the result, 0001 and 0111, correspond to the digits "1" and "7". This yields "17" in BCD, which is
the correct result.
This technique can be extended to adding multiple digits by adding in groups from right to left, propagating the
second digit as a carry, always comparing the 5-bit result of each digit-pair sum to 9.

Subtraction with BCD
Subtraction is done by adding the ten's complement of the subtrahend. To represent the sign of a number in BCD, the
number 0000 is used to represent a positive number, and 1001 is used to represent a negative number. The remaining
14 combinations are invalid signs. To illustrate signed BCD subtraction, consider the following problem: 357 − 432.
In signed BCD, 357 is 0000 0011 0101 0111. The ten's complement of 432 can be obtained by taking the nine's
complement of 432, and then adding one. So, 999 − 432 = 567, and 567 + 1 = 568. By preceding 568 in BCD by the
negative sign code, the number −432 can be represented. So, −432 in signed BCD is 1001 0101 0110 1000.
Now that both numbers are represented in signed BCD, they can be added together:

0000 0011 0101 0111 + 1001 0101 0110 1000 = 1001 1000 1011 1111

 0 3 5 7 + 9 5 6 8 = 9 8 11 15

Since BCD is a form of decimal representation, several of the digit sums above are invalid. In the event that an
invalid entry (any BCD digit greater than 1001) exists, 6 is added to generate a carry bit and cause the sum to
become a valid entry. The reason for adding 6 is that there are 16 possible 4-bit BCD values (since 24 = 16), but only
10 values are valid (0000 through 1001). So adding 6 to the invalid entries results in the following:

1001 1000 1011 1111 + 0000 0000 0110 0110 = 1001 1001 0010 0101

 9 8 11 15 + 0 0 6 6 = 9 9 2 5

Thus the result of the subtraction is 1001 1001 0010 0101 (-925). To check the answer, note that the first bit is the
sign bit, which is negative. This seems to be correct, since 357 − 432 should result in a negative number. To check
the rest of the digits, represent them in decimal. 1001 0010 0101 is 925. The ten's complement of 925 is 1000 − 925
= 999 − 925 + 1 = 074 + 1 = 75, so the calculated answer is −75. To check, perform standard subtraction to verify
that 357 − 432 is −75.
Note that in the event that there are a different number of nibbles being added together (such as 1053 − 122), the
number with the fewest number of digits must first be padded with zeros before taking the ten's complement or
subtracting. So, with 1053 − 122, 122 would have to first be represented as 0122, and the ten's complement of 0122
would have to be calculated.

http://en.wikipedia.org/w/index.php?title=Addition
http://en.wikipedia.org/w/index.php?title=Nibble
http://en.wikipedia.org/w/index.php?title=Ten%27s_complement
http://en.wikipedia.org/w/index.php?title=Subtrahend
http://en.wikipedia.org/w/index.php?title=Positive_number
http://en.wikipedia.org/w/index.php?title=Negative_number
http://en.wikipedia.org/w/index.php?title=Ten%27s_complement
http://en.wikipedia.org/w/index.php?title=Nine%27s_complement
http://en.wikipedia.org/w/index.php?title=Nine%27s_complement
http://en.wikipedia.org/w/index.php?title=Ten%27s_complement
http://en.wikipedia.org/w/index.php?title=Ten%27s_complement
http://en.wikipedia.org/w/index.php?title=Ten%27s_complement

Binary-coded decimal 21

Background
The binary-coded decimal scheme described in this article is the most common encoding, but there are many others.
The method here can be referred to as Simple Binary-Coded Decimal (SBCD) or BCD 8421. In the headers to the
table, the '8 4 2 1', etc., indicates the weight of each bit shown; note that in the fifth column two of the weights are
negative. Both ASCII and EBCDIC character codes for the digits are examples of zoned BCD, and are also shown in
the table.
The following table represents decimal digits from 0 to 9 in various BCD systems:

Digit BCD
8 4 2 1

Excess-3
or Stibitz Code

BCD 2 4 2 1
or Aiken Code

BCD
8 4 −2 −1

IBM 702 IBM 705
IBM 7080 IBM

1401
8 4 2 1

ASCII
0000 8421

EBCDIC
0000 8421

0 0000 0011 0000 0000 1010 0011 0000 1111 0000

1 0001 0100 0001 0111 0001 0011 0001 1111 0001

2 0010 0101 0010 0110 0010 0011 0010 1111 0010

3 0011 0110 0011 0101 0011 0011 0011 1111 0011

4 0100 0111 0100 0100 0100 0011 0100 1111 0100

5 0101 1000 1011 1011 0101 0011 0101 1111 0101

6 0110 1001 1100 1010 0110 0011 0110 1111 0110

7 0111 1010 1101 1001 0111 0011 0111 1111 0111

8 1000 1011 1110 1000 1000 0011 1000 1111 1000

9 1001 1100 1111 1111 1001 0011 1001 1111 1001

Legal history
In the 1972 case Gottschalk v. Benson, the U.S. Supreme Court overturned a lower court decision which had allowed
a patent for converting BCD encoded numbers to binary on a computer. This was an important case in determining
the patentability of software and algorithms.

Comparison with pure binary

Advantages
•• Many non-integral values, such as decimal 0.2, have an infinite place-value representation in binary

(.001100110011...) but have a finite place-value in binary-coded decimal (0.0010). Consequently a system based
on binary-coded decimal representations of decimal fractions avoids errors representing and calculating such
values.

•• Scaling by a factor of 10 (or a power of 10) is simple; this is useful when a decimal scaling factor is needed to
represent a non-integer quantity (e.g., in financial calculations)

• Rounding at a decimal digit boundary is simpler. Addition and subtraction in decimal does not require rounding.
•• Alignment of two decimal numbers (for example 1.3 + 27.08) is a simple, exact, shift.
• Conversion to a character form or for display (e.g., to a text-based format such as XML, or to drive signals for a

seven-segment display) is a simple per-digit mapping, and can be done in linear (O(n)) time. Conversion from
pure binary involves relatively complex logic that spans digits, and for large numbers no linear-time conversion
algorithm is known (see Binary numeral system).

http://en.wikipedia.org/w/index.php?title=Decimal
http://en.wikipedia.org/w/index.php?title=Excess-3
http://en.wikipedia.org/w/index.php?title=George_Stibitz
http://en.wikipedia.org/w/index.php?title=Howard_Aiken
http://en.wikipedia.org/w/index.php?title=IBM_702
http://en.wikipedia.org/w/index.php?title=IBM_705
http://en.wikipedia.org/w/index.php?title=IBM_7080
http://en.wikipedia.org/w/index.php?title=IBM_1401
http://en.wikipedia.org/w/index.php?title=IBM_1401
http://en.wikipedia.org/w/index.php?title=ASCII
http://en.wikipedia.org/w/index.php?title=EBCDIC
http://en.wikipedia.org/w/index.php?title=Gottschalk_v._Benson
http://en.wikipedia.org/w/index.php?title=Rounding
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=Seven-segment_display
http://en.wikipedia.org/w/index.php?title=Big-O_notation
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system%23Conversion_to_and_from_other_numeral_systems

Binary-coded decimal 22

Disadvantages
• Some operations are more complex to implement. Adders require extra logic to cause them to wrap and generate a

carry early. 15–20 percent more circuitry is needed for BCD add compared to pure binary. Multiplication requires
the use of algorithms that are somewhat more complex than shift-mask-add (a binary multiplication, requiring
binary shifts and adds or the equivalent, per-digit or group of digits is required)

• Standard BCD requires four bits per digit, roughly 20 percent more space than a binary encoding (the ratio of 4
bits to log210 bits is 1.204). When packed so that three digits are encoded in ten bits, the storage overhead is
greatly reduced, at the expense of an encoding that is unaligned with the 8-bit byte boundaries common on
existing hardware, resulting in slower implementations on these systems.

•• Practical existing implementations of BCD are typically slower than operations on binary representations,
especially on embedded systems, due to limited processor support for native BCD operations.

Application
The BIOS in many personal computers stores the date and time in BCD because the MC6818 real-time clock chip
used in the original IBM PC AT motherboard provided the time encoded in BCD. This form is easily converted into
ASCII for display.[4]

The Atari 8-bit family of computers used BCD to implement floating-point algorithms. The MOS 6502 processor
used has a BCD mode that affects the addition and subtraction instructions.
Early models of the PlayStation 3 store the date and time in BCD. This led to a worldwide outage of the console on 1
March 2010. The last two digits of the year stored as BCD were misinterpreted as 16 causing a paradox in the unit's
date, rendering most functionalities inoperable.

Representational variations
Various BCD implementations exist that employ other representations for numbers. Programmable calculators
manufactured by Texas Instruments, Hewlett-Packard, and others typically employ a floating-point BCD format,
typically with two or three digits for the (decimal) exponent. The extra bits of the sign digit may be used to indicate
special numeric values, such as infinity, underflow/overflow, and error (a blinking display).

Signed variations
Signed decimal values may be represented in several ways. The COBOL programming language, for example,
supports a total of five zoned decimal formats, each one encoding the numeric sign in a different way:

Type Description Example

Unsigned No sign nibble F1 F2 F3

Signed trailing (canonical format) Sign nibble in the last (least significant) byte F1 F2 C3

Signed leading (overpunch) Sign nibble in the first (most significant) byte C1 F2 F3

Signed trailing separate Separate sign character byte ('+' or '−') following the digit bytes F1 F2 F3 2B

Signed leading separate Separate sign character byte ('+' or '−') preceding the digit bytes 2B F1 F2 F3

http://en.wikipedia.org/w/index.php?title=Adder_%28electronics%29
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system%23Multiplication
http://en.wikipedia.org/w/index.php?title=BIOS
http://en.wikipedia.org/w/index.php?title=Personal_computer
http://en.wikipedia.org/w/index.php?title=MC6818
http://en.wikipedia.org/w/index.php?title=IBM_PC_AT
http://en.wikipedia.org/w/index.php?title=Atari_8-bit_family
http://en.wikipedia.org/w/index.php?title=MOS_Technology_6502
http://en.wikipedia.org/w/index.php?title=PlayStation_3
http://en.wikipedia.org/w/index.php?title=Time_formatting_and_storage_bugs
http://en.wikipedia.org/w/index.php?title=Programmable_calculator
http://en.wikipedia.org/w/index.php?title=Texas_Instruments
http://en.wikipedia.org/w/index.php?title=Hewlett-Packard
http://en.wikipedia.org/w/index.php?title=Floating-point
http://en.wikipedia.org/w/index.php?title=Infinity
http://en.wikipedia.org/w/index.php?title=Arithmetic_underflow
http://en.wikipedia.org/w/index.php?title=Arithmetic_overflow
http://en.wikipedia.org/w/index.php?title=Defined_and_undefined
http://en.wikipedia.org/w/index.php?title=COBOL

Binary-coded decimal 23

Telephony Binary Coded Decimal (TBCD)
GSM developed TBCD, an expansion to BCD where the remaining (unused) bit combinations are used to add
specific telephony characters.[5] It is backward compatible to BCD.

Decimal
Digit

BCD
8 4 2 1

* 1 0 1 0

1 0 1 1

a 1 1 0 0

b 1 1 0 1

c 1 1 1 0

Used as filler when there is an odd number of digits 1 1 1 1

Alternative encodings
If errors in representation and computation are more important than the speed of conversion to and from display, a
scaled binary representation may be used, which stores a decimal number as a binary-encoded integer and a
binary-encoded signed decimal exponent. For example, 0.2 can be represented as 2×10−1.
This representation allows rapid multiplication and division, but may require shifting by a power of 10 during
addition and subtraction to align the decimal points. It is appropriate for applications with a fixed number of decimal
places that do not then require this adjustment— particularly financial applications where 2 or 4 digits after the
decimal point are usually enough. Indeed this is almost a form of fixed point arithmetic since the position of the
radix point is implied.
Chen-Ho encoding provides a boolean transformation for converting groups of three BCD-encoded digits to and
from 10-bit values that can be efficiently encoded in hardware with only 2 or 3 gate delays. Densely Packed Decimal
is a similar scheme that is used for most of the significand, except the lead digit, for one of the two alternative
decimal encodings specified in the IEEE 754-2008 standard.

References
[1] "General Decimal Arithmetic" (http:/ / speleotrove. com/ decimal/). .
[2] "ILE RPG Reference" (http:/ / publib. boulder. ibm. com/ iseries/ v5r2/ ic2924/ books/ c0925083170. htm). .
[3] IBM BM 1401/1440/1460/1410/7010 Character Code Chart in BCD Order (http:/ / ed-thelen. org/ 1401Project/ Van1401-CodeChart. pdf)
[4] http:/ / www. se. ecu. edu. au/ units/ ens1242/ lectures/ ens_Notes_08. pdf
[5] "Signalling Protocols and Switching (SPS) Guidelines for using Abstract Syntax Notation One (ASN.1) in telecommunication application

protocols" (http:/ / www. etsi. org/ deliver/ etsi_etr/ 001_099/ 060/ 02_60/ etr_060e02p. pdf). .

Further reading
• Mackenzie, Charles E. (1980). Coded Character Sets: History and Development. Addison-Wesley.

ISBN 0-201-14460-3.
• Arithmetic Operations in Digital Computers, R. K. Richards, 397pp, D. Van Nostrand Co., NY, 1955
• Schmid, Hermann, Decimal computation, ISBN 0-471-76180-X, 266pp, Wiley, 1974
• Superoptimizer: A Look at the Smallest Program, Henry Massalin, ACM Sigplan Notices, Vol. 22 #10

(Proceedings of the Second International Conference on Architectural support for Programming Languages and
Operating Systems), pp122–126, ACM, also IEEE Computer Society Press #87CH2440-6, October 1987

• VLSI designs for redundant binary-coded decimal addition, Behrooz Shirazi, David Y. Y. Yun, and Chang N.
Zhang, IEEE Seventh Annual International Phoenix Conference on Computers and Communications, 1988,

http://en.wikipedia.org/w/index.php?title=GSM
http://en.wikipedia.org/w/index.php?title=Telephony
http://en.wikipedia.org/w/index.php?title=Backward_compatible
http://en.wikipedia.org/w/index.php?title=Fixed_point_arithmetic
http://en.wikipedia.org/w/index.php?title=Radix_point
http://en.wikipedia.org/w/index.php?title=Chen-Ho_encoding
http://en.wikipedia.org/w/index.php?title=Densely_Packed_Decimal
http://en.wikipedia.org/w/index.php?title=Significand
http://en.wikipedia.org/w/index.php?title=IEEE_754-2008
http://speleotrove.com/decimal/
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/c0925083170.htm
http://ed-thelen.org/1401Project/Van1401-CodeChart.pdf
http://www.se.ecu.edu.au/units/ens1242/lectures/ens_Notes_08.pdf
http://www.etsi.org/deliver/etsi_etr/001_099/060/02_60/etr_060e02p.pdf

Binary-coded decimal 24

pp52–56, IEEE, March 1988
• Fundamentals of Digital Logic by Brown and Vranesic, 2003
• Modified Carry Look Ahead BCD Adder With CMOS and Reversible Logic Implementation, Himanshu Thapliyal

and Hamid R. Arabnia, Proceedings of the 2006 International Conference on Computer Design (CDES'06), ISBN
1-60132-009-4, pp64–69, CSREA Press, November 2006

• Reversible Implementation of Densely-Packed-Decimal Converter to and from Binary-Coded-Decimal Format
Using in IEEE-754R, A. Kaivani, A. Zaker Alhosseini, S. Gorgin, and M. Fazlali, 9th International Conference on
Information Technology (ICIT'06), pp273–276, IEEE, December 2006.

• Decimal Arithmetic Bibliography (http:/ / speleotrove. com/ decimal/ decbibindex. html)

External links
• IBM: Chen-Ho encoding (http:/ / speleotrove. com/ decimal/ chen-ho. html)
• IBM: Densely Packed Decimal (http:/ / speleotrove. com/ decimal/ DPDecimal. html).
• Convert BCD to decimal, binary and hexadecimal and vice versa (http:/ / www. unitjuggler. com/

convert-numbersystems-from-decimal-to-bcd. html)
• BCD for Java (https:/ / code. google. com/ p/ bcd4j/)

Gray code

Gray code
by bit width

2-bit 4-bit

00
01
11
10

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

3-bit

000
001
011
010
110
111
101
100

The reflected binary code, also known as Gray code after Frank Gray, is a binary numeral system where two
successive values differ in only one bit. It is a non-weighted code.
The reflected binary code was originally designed to prevent spurious output from electromechanical switches.
Today, Gray codes are widely used to facilitate error correction in digital communications such as digital terrestrial
television and some cable TV systems.

http://speleotrove.com/decimal/decbibindex.html
http://speleotrove.com/decimal/chen-ho.html
http://speleotrove.com/decimal/DPDecimal.html
http://www.unitjuggler.com/convert-numbersystems-from-decimal-to-bcd.html
http://www.unitjuggler.com/convert-numbersystems-from-decimal-to-bcd.html
https://code.google.com/p/bcd4j/
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Frank_Gray_%28researcher%29
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Electromechanical
http://en.wikipedia.org/w/index.php?title=Switch
http://en.wikipedia.org/w/index.php?title=Error_correction
http://en.wikipedia.org/w/index.php?title=Digital_terrestrial_television
http://en.wikipedia.org/w/index.php?title=Digital_terrestrial_television
http://en.wikipedia.org/w/index.php?title=DOCSIS

Gray code 25

Name

Gray's patent introduces the term "reflected
binary code"

Bell Labs researcher Frank Gray introduced the term reflected binary
code in his 1947 patent application, remarking that the code had "as yet
no recognized name".[1] He derived the name from the fact that it "may
be built up from the conventional binary code by a sort of reflection
process".

The code was later named after Gray by others who used it. Two
different 1953 patent applications give "Gray code" as an alternative
name for the "reflected binary code";[2][3] one of those also lists
"minimum error code" and "cyclic permutation code" among the
names.[3] A 1954 patent application refers to "the Bell Telephone Gray
code".[4]

Motivation
Many devices indicate position by closing and opening switches. If that device uses natural binary codes, these two
positions would be right next to each other:

...

011

100

...

The problem with natural binary codes is that, with real (mechanical) switches, it is very unlikely that switches will
change states exactly in synchrony. In the transition between the two states shown above, all three switches change
state. In the brief period while all are changing, the switches will read some spurious position. Even without
keybounce, the transition might look like 011 — 001 — 101 — 100. When the switches appear to be in position 001,
the observer cannot tell if that is the "real" position 001, or a transitional state between two other positions. If the
output feeds into a sequential system (possibly via combinational logic) then the sequential system may store a false
value.
The reflected binary code solves this problem by changing only one switch at a time, so there is never any ambiguity
of position,

Dec Gray Binary

 0 000 000

 1 001 001

 2 011 010

 3 010 011

 4 110 100

 5 111 101

 6 101 110

 7 100 111

Notice that state 7 can roll over to state 0 with only one switch change. This is called the "cyclic" property of a Gray
code. In the standard Gray coding the least significant bit follows a repetitive pattern of 2 on, 2 off (… 11001100 …
); the next digit a pattern of 4 on, 4 off; and so forth.
More formally, a Gray code is a code assigning to each of a contiguous set of integers, or to each member of a
circular list, a word of symbols such that each two adjacent code words differ by one symbol. These codes are also

http://en.wikipedia.org/w/index.php?title=File%3AReflected_binary_Gray_2632058.png
http://en.wikipedia.org/w/index.php?title=Bell_Labs
http://en.wikipedia.org/w/index.php?title=Frank_Gray_%28researcher%29
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Keybounce
http://en.wikipedia.org/w/index.php?title=Sequential_logic
http://en.wikipedia.org/w/index.php?title=Combinational_logic
http://en.wikipedia.org/w/index.php?title=Integer

Gray code 26

known as single-distance codes, reflecting the Hamming distance of 1 between adjacent codes. There can be more
than one Gray code for a given word length, but the term was first applied to a particular binary code for the
non-negative integers, the binary-reflected Gray code, or BRGC, the three-bit version of which is shown above.

History and practical application
Reflected binary codes were applied to mathematical puzzles before they became known to engineers. The French
engineer Émile Baudot used Gray codes in telegraphy in 1878. He received the French Legion of Honor medal for
his work. The Gray code is sometimes attributed, incorrectly,[5] to Elisha Gray (in Principles of Pulse Code
Modulation, K. W. Cattermole,[6] for example).
Frank Gray, who became famous for inventing the signaling method that came to be used for compatible color
television, invented a method to convert analog signals to reflected binary code groups using vacuum tube-based
apparatus. The method and apparatus were patented in 1953 and the name of Gray stuck to the codes. The "PCM
tube" apparatus that Gray patented was made by Raymond W. Sears of Bell Labs, working with Gray and William
M. Goodall, who credited Gray for the idea of the reflected binary code.[7]

Part of front page of Gray's patent, showing PCM tube (10) with reflected binary code in plate (15)

The use of his eponymous codes that Gray was most interested in was to minimize the effect of error in the
conversion of analog signals to digital; his codes are still used today for this purpose, and others.

http://en.wikipedia.org/w/index.php?title=Hamming_distance
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=%C3%89mile_Baudot
http://en.wikipedia.org/w/index.php?title=Telegraphy
http://en.wikipedia.org/w/index.php?title=L%C3%A9gion_d%27honneur
http://en.wikipedia.org/w/index.php?title=Elisha_Gray
http://en.wikipedia.org/w/index.php?title=Frank_Gray_%28researcher%29
http://en.wikipedia.org/w/index.php?title=Vacuum_tube
http://en.wikipedia.org/w/index.php?title=File%3AUS02632058_Gray.png

Gray code 27

Position encoders

Rotary encoder for angle-measuring devices
marked in 3-bit binary-reflected Gray code

(BRGC)

A Gray code absolute rotary encoder with 13
tracks. At the top can be seen the housing,

interrupter disk, and light source; at the bottom
can be seen the sensing element and support

components.

Gray codes are used in position encoders (linear encoders and rotary
encoders), in preference to straightforward binary encoding. This
avoids the possibility that, when several bits change in the binary
representation of an angle, a misread will result from some of the bits
changing before others. Originally, the code pattern was electrically
conductive, supported (in a rotary encoder) by an insulating disk. Each
track had its own stationary metal spring contact; one more contact
made the connection to the pattern. That common contact was
connected by the pattern to whichever of the track contacts were
resting on the conductive pattern. However, sliding contacts wear out
and need maintenance, which favors optical encoders.

Regardless of the care in aligning the contacts, and accuracy of the
pattern, a natural-binary code would have errors at specific disk
positions, because it is impossible to make all bits change at exactly the
same time as the disk rotates. The same is true of an optical encoder;
transitions between opaque and transparent cannot be made to happen
simultaneously for certain exact positions. Rotary encoders benefit
from the cyclic nature of Gray codes, because consecutive positions of
the sequence differ by only one bit. This means that, for a transition
from state A to state B, timing mismatches can only affect when the
A→B transition occurs, rather than inserting one or more (up to N-1
for an N-bit codeword) false intermediate states, as would occur if a
standard binary code were used.

Towers of Hanoi

The binary-reflected Gray code can also be used to serve as a solution
guide for the Towers of Hanoi problem, as well as the classical
Chinese rings puzzle, a sequential mechanical puzzle mechanism.[5] It
also forms a Hamiltonian cycle on a hypercube, where each bit is seen
as one dimension.

Genetic algorithms

Due to the Hamming distance properties of Gray codes, they are
sometimes used in genetic algorithms. They are very useful in this
field, since mutations in the code allow for mostly incremental
changes, but occasionally a single bit-change can cause a big leap and
lead to new properties.

Karnaugh maps

Gray codes are also used in labelling the axes of Karnaugh maps.[8]

http://en.wikipedia.org/w/index.php?title=Rotary_encoder
http://en.wikipedia.org/w/index.php?title=File%3AEncoder_Disc_%283-Bit%29.svg
http://en.wikipedia.org/w/index.php?title=File%3AGray_code_rotary_encoder_13-track_opened.jpg
http://en.wikipedia.org/w/index.php?title=Linear_encoder
http://en.wikipedia.org/w/index.php?title=Rotary_encoder
http://en.wikipedia.org/w/index.php?title=Rotary_encoder
http://en.wikipedia.org/w/index.php?title=Tower_of_Hanoi
http://en.wikipedia.org/w/index.php?title=Chinese_rings_puzzle
http://en.wikipedia.org/w/index.php?title=Hamiltonian_cycle
http://en.wikipedia.org/w/index.php?title=Hypercube
http://en.wikipedia.org/w/index.php?title=Hamming_distance
http://en.wikipedia.org/w/index.php?title=Genetic_algorithm
http://en.wikipedia.org/w/index.php?title=Karnaugh_map

Gray code 28

Error correction
In modern digital communications, Gray codes play an important role in error correction. For example, in a digital
modulation scheme such as QAM where data is typically transmitted in symbols of 4 bits or more, the signal's
constellation diagram is arranged so that the bit patterns conveyed by adjacent constellation points differ by only one
bit. By combining this with forward error correction capable of correcting single-bit errors, it is possible for a
receiver to correct any transmission errors that cause a constellation point to deviate into the area of an adjacent
point. This makes the transmission system less susceptible to noise.

Communication between clock domains
Digital logic designers use Gray codes extensively for passing multi-bit count information between synchronous
logic that operates at different clock frequencies. The logic is considered operating in different "clock domains". It is
fundamental to the design of large chips that operate with many different clocking frequencies.

Gray code counters and arithmetic

A typical use of Gray code counters is building a FIFO (first-in, first-out) data buffer that has read and write ports
that exist in different clock domains. The input and output counters inside such a dual-port FIFO are often stored
using Gray code to prevent invalid transient states from being captured when the count crosses clock domains.[9] The
updated read and write pointers need to be passed between clock domains when they change, to be able to track
FIFO empty and full status in each domain. Each bit of the pointers is sampled non-deterministically for this clock
domain transfer. So for each bit, either the old value or the new value is propagated. Therefore, if more than one bit
in the multi-bit pointer is changing at the sampling point, a "wrong" binary value (neither new nor old) can be
propagated. By guaranteeing only one bit can be changing, Gray codes guarantee that the only possible sampled
values are the new or old multi-bit value. Typically Gray codes of power-of-two length are used.
Sometimes digital buses in electronic systems are used to convey quantities that can only increase or decrease by one
at a time, for example the output of an event counter which is being passed between clock domains or to a
digital-to-analog converter. The advantage of Gray codes in these applications is that differences in the propagation
delays of the many wires that represent the bits of the code cannot cause the received value to go through states that
are out of the Gray code sequence. This is similar to the advantage of Gray codes in the construction of mechanical
encoders, however the source of the Gray code is an electronic counter in this case. The counter itself must count in
Gray code, or if the counter runs in binary then the output value from the counter must be reclocked after it has been
converted to Gray code, because when a value is converted from binary to Gray code, it is possible that differences
in the arrival times of the binary data bits into the binary-to-Gray conversion circuit will mean that the code could go
briefly through states that are wildly out of sequence. Adding a clocked register after the circuit that converts the
count value to Gray code may introduce a clock cycle of latency, so counting directly in Gray code may be
advantageous. A Gray code counter was patented in 1962 US3020481 [10], and there have been many others since. In
recent times a Gray code counter can be implemented as a state machine in Verilog. In order to produce the next
count value, it is necessary to have some combinational logic that will increment the current count value that is
stored in Gray code. Probably the most obvious way to increment a Gray code number is to convert it into ordinary
binary code, add one to it with a standard binary adder, and then convert the result back to Gray code. This approach
was discussed in a paper in 1996 [11] and then subsequently patented by someone else in 1998 US5754614 [12]. Other
methods of counting in Gray code are discussed in a report by R. W. Doran, including taking the output from the
first latches of the master-slave flip flops in a binary ripple counter.[13]

Perhaps the most common electronic counter with the "only one bit changes at a time" property is the Johnson
counter.

http://en.wikipedia.org/w/index.php?title=Digital_communications
http://en.wikipedia.org/w/index.php?title=Error_correction
http://en.wikipedia.org/w/index.php?title=Digital_modulation
http://en.wikipedia.org/w/index.php?title=Digital_modulation
http://en.wikipedia.org/w/index.php?title=Quadrature_amplitude_modulation
http://en.wikipedia.org/w/index.php?title=Symbol_rate
http://en.wikipedia.org/w/index.php?title=Constellation_diagram
http://en.wikipedia.org/w/index.php?title=Forward_error_correction
http://en.wikipedia.org/w/index.php?title=Receiver_%28radio%29
http://en.wikipedia.org/w/index.php?title=Noise
http://www.google.com/patents?vid=3020481
http://en.wikipedia.org/w/index.php?title=Verilog
http://www.google.com/patents?vid=5754614
http://en.wikipedia.org/w/index.php?title=Johnson_counter
http://en.wikipedia.org/w/index.php?title=Johnson_counter

Gray code 29

Constructing an n-bit Gray code

The first few steps of the reflect-and-prefix
method.

4-bit Gray code permutation

The binary-reflected Gray code list for n bits can be
generated recursively from the list for n−1 bits by
reflecting the list (i.e. listing the entries in reverse
order), concatenating the original list with the reversed
list, prefixing the entries in the original list with a
binary 0, and then prefixing the entries in the reflected
list with a binary 1. For example, generating the n = 3
list from the n = 2 list:

2-bit list: 00, 01, 11, 10

Reflected: 10, 11, 01, 00

Prefix old entries with 0: 000, 001, 011, 010,

Prefix new entries with 1: 110, 111, 101, 100

Concatenated: 000, 001, 011, 010, 110, 111, 101, 100

The one-bit Gray code is G1 = (0, 1). This can be thought of as built recursively as above from a zero-bit Gray code
G0 = { Λ } consisting of a single entry of zero length. This iterative process of generating Gn+1 from Gn makes the
following properties of the standard reflecting code clear:
• Gn is a permutation of the numbers 0, ..., 2n−1. (Each number appears exactly once in the list.)
• Gn is embedded as the first half of Gn+1.
• Therefore the coding is stable, in the sense that once a binary number appears in Gn it appears in the same

position in all longer lists; so it makes sense to talk about the reflective Gray code value of a number: G(m) = the
m-th reflecting Gray code, counting from 0.

• Each entry in Gn differs by only one bit from the previous entry. (The Hamming distance is 1.)

http://en.wikipedia.org/w/index.php?title=File%3ABinary-reflected_Gray_code_construction.svg
http://en.wikipedia.org/w/index.php?title=File%3AGray_code_permutation_matrix_16.svg
http://en.wikipedia.org/w/index.php?title=Recursion
http://en.wikipedia.org/w/index.php?title=Permutation

Gray code 30

• The last entry in Gn differs by only one bit from the first entry. (The code is cyclic.)
These characteristics suggest a simple and fast method of translating a binary value into the corresponding Gray
code. Each bit is inverted if the next higher bit of the input value is set to one. This can be performed in parallel by a
bit-shift and exclusive-or operation if they are available: the nth Gray code is obtained by computing
A similar method can be used to perform the reverse translation, but the computation of each bit depends on the
computed value of the next higher bit so it cannot be performed in parallel. Assuming is the th gray-coded bit (

being the most significant bit), and is the th binary-coded bit (being the most-significant bit), the
reverse translation can be given recursively: , and . Alternatively, decoding a Gray code
into a binary number can be described as a prefix sum of the bits in the Gray code, where each individual summation
operation in the prefix sum is performed modulo two.
To construct the binary-reflected Gray code iteratively, start with the code 0, and at step i find the bit position of the
least significant '1' in the binary representation of i - flip the bit at that position in the previous code to get the next
code. The bit positions start 0, 1, 0, 2, 0, 1, 0, 3, ... (sequence A007814 in OEIS). See find first set for efficient
algorithms to compute these values.

Converting to and from Gray code
The following functions in C convert between binary numbers and their associated Gray codes.

/*

 The purpose of this function is to convert an unsigned

 binary number to reflected binary Gray code.

 The operator >> is shift right. The operator ^ is exclusive or.

*/

unsigned int binaryToGray(unsigned int num)

{

 return (num >> 1) ^ num;

}

/*

 The purpose of this function is to convert a reflected binary

 Gray code number to a binary number.

*/

unsigned int grayToBinary(unsigned int num)

{

 unsigned int numBits = 8 * sizeof(num);

 unsigned int shift;

 for (shift = 1; shift < numBits; shift = 2 * shift)

 {

 num = num ^ (num >> shift);

 }

 return num;

}

http://en.wikipedia.org/w/index.php?title=Prefix_sum
http://oeis.org/A007814
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/w/index.php?title=Find_first_set
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29

Gray code 31

Special types of Gray codes
In practice, a "Gray code" almost always refers to a binary-reflected Gray code (BRGC). However, mathematicians
have discovered other kinds of Gray codes. Like BRGCs, each consists of a lists of words, where each word differs
from the next in only one digit (each word has a Hamming distance of 1 from the next word).

n-ary Gray code

Ternary number → ternary Gray code

 0 → 000
 1 → 001
 2 → 002
 10 → 012
 11 → 010
 12 → 011
 20 → 021
 21 → 022
 22 → 020
100 → 120
101 → 121
102 → 122
110 → 102
111 → 100
112 → 101
120 → 111
121 → 112
122 → 110
200 → 210
201 → 211
202 → 212
210 → 222
211 → 220
212 → 221
220 → 201
221 → 202
222 → 200

There are many specialized types of Gray codes other than the binary-reflected Gray code. One such type of Gray
code is the n-ary Gray code, also known as a non-Boolean Gray code. As the name implies, this type of Gray code
uses non-Boolean values in its encodings.
For example, a 3-ary (ternary) Gray code would use the values {0, 1, 2}. The (n, k)-Gray code is the n-ary Gray code
with k digits.[14] The sequence of elements in the (3, 2)-Gray code is: {00, 01, 02, 12, 10, 11, 21, 22, 20}. The
(n, k)-Gray code may be constructed recursively, as the BRGC, or may be constructed iteratively. An algorithm to
iteratively generate the (N, k)-Gray code is presented (in C):

// inputs: base, digits, value

// output: gray

// Convert a value to a graycode with the given base and digits.

// Iterating through a sequence of values would result in a sequence

// of Gray codes in which only one digit changes at a time.

void to_gray(unsigned base, unsigned digits, unsigned value, unsigned

gray[digits])

{

 unsigned baseN[digits]; // Stores the ordinary base-N

http://en.wikipedia.org/w/index.php?title=Hamming_distance
http://en.wikipedia.org/w/index.php?title=Ternary
http://en.wikipedia.org/w/index.php?title=Iteration
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29

Gray code 32

number, one digit per entry

 unsigned i; // The loop variable

 // Put the normal baseN number into the baseN array. For base 10,

 109

 // would be stored as [9,0,1]

 for (i = 0; i < digits; i++) {

 baseN[i] = value % base;

 value = value / base;

 }

 // Convert the normal baseN number into the graycode equivalent.

Note that

 // the loop starts at the most significant digit and goes down.

 unsigned shift = 0;

 while (i--) {

 // The gray digit gets shifted down by the sum of the

higher

 // digits.

 gray[i] = (baseN[i] + shift) % base;

 shift = shift + base - gray[i]; // Subtract from base

so shift is positive

 }

}

// EXAMPLES

// input: value = 1899, base = 10, digits = 4

// output: baseN[] = [9,9,8,1], gray[] = [0,1,7,1]

// input: value = 1900, base = 10, digits = 4

// output: baseN[] = [0,0,9,1], gray[] = [0,1,8,1]

There are other graycode algorithms for (n,k)-Gray codes. It is important to note that the (n,k)-Gray codes produced
by the above algorithm is always cyclical; some algorithms, such as that by Guan,[14] lack this property when k is
odd. On the other hand, while only one digit at a time changes with this method, it can change by wrapping (looping
from n-1 to 0). In Guan's algorithm, the count alternately rises and falls, so that the numeric difference between two
graycode digits is always one.
Gray codes are not uniquely defined, because a permutation of the columns of such a code is a Gray code too. The
above procedure produces a code in which the lower the significance of a digit, the more often it changes, making it
similar to normal counting methods.

Gray code 33

Balanced Gray code
Although the binary reflected Gray code is useful in many scenarios, it is not optimal in certain cases because of a
lack of "uniformity".[15] In balanced Gray codes, the number of changes in different coordinate positions are as close
as possible. To make this more precise, let G be a R-ary complete Gray cycle having transition sequence ; the
transition counts (spectrum) of are the collection of integers defined by

A Gray code is uniform or uniformly balanced if its transition counts are all equal, in which case we have
for all k. Clearly, when , such codes exist only if n is a power of 2. Otherwise, if n does not

divide evenly, it is possible to construct well-balanced codes where every transition count is either
or . Gray codes can also be exponentially balanced if all of their transition counts are adjacent powers of
two, and such codes exist for every power of two.[16]

We will now show a construction for well-balanced binary Gray codes which allows us to generate a n-digit
balanced Gray code for every n.[17] The main principle is to inductively construct a -digit Gray code
given an n-digit Gray code G in such a way that the balanced property is preserved. To do this, we consider
partitions of into an even number L of non-empty blocks of the form

where , and (mod). This partition induces a -digit Gray code given
by

If we define the transition multiplicities to be the number of times the digit
in position i changes between consecutive blocks in a partition, then for the -digit Gray code induced by
this partition the transition spectrum is

The delicate part of this construction is to find an adequate partitioning of a balanced n-digit Gray code such that the
code induced by it remains balanced. Uniform codes can be found when and

, and this construction can be extended to the R-ary case as well.[17]

Monotonic Gray codes
Monotonic codes are useful in the theory of interconnection networks, especially for minimizing dilation for linear
arrays of processors.[18] If we define the weight of a binary string to be the number of 1's in the string, then although
we clearly cannot have a Gray code with strictly increasing weight, we may want to approximate this by having the
code run through two adjacent weights before reaching the next one.
We can formalize the concept of monotone Gray codes as follows: consider the partition of the hypercube

into levels of vertices that have equal weight, i.e.

for . These levels satisfy . Let be the subgraph of induced by

, and let be the edges in . A monotonic Gray code is then a Hamiltonian path
in such that whenever comes before in the path, then .

Gray code 34

An elegant construction of monotonic n-digit Gray codes for any n is based on the idea of recursively building

subpaths of length having edges in .[18] We define , whenever

or , and

otherwise. Here, is a suitably defined permutation and refers to the path P with its coordinates permuted by
. These paths give rise to two monotonic n-digit Gray codes and given by

The choice of which ensures that these codes are indeed Gray codes turns out to be . The
first few values of are shown in the table below.

Subpaths in the Savage-Winkler algorithm

j = 0 j = 1 j = 2 j = 3

n = 1 0, 1

n = 2 00, 01 10, 11

n = 3 000, 001 100, 110, 010, 011 101, 111

n = 4 0000, 0001 1000, 1100, 0100, 0110, 0010, 0011 1010, 1011, 1001, 1101, 0101, 0111 1110, 1111

These monotonic Gray codes can be efficiently implemented in such a way that each subsequent element can be
generated in O(n) time. The algorithm is most easily described using coroutines.
Monotonic codes have an interesting connection to the Lovász conjecture, which states that every connected
vertex-transitive graph contains a Hamiltonian path. The "middle-level" subgraph is vertex-transitive
(that is, its automorphism group is transitive, so that each vertex has the same "local environment"" and cannot be
differentiated from the others, since we can relabel the coordinates as well as the binary digits to obtain an
automorphism) and the problem of finding a Hamiltonian path in this subgraph is called the "middle-levels
problem", which can provide insights into the more general conjecture. The question has been answered
affirmatively for , and the preceding construction for monotonic codes ensures a Hamiltonian path of
length at least 0.839N where N is the number of vertices in the middle-level subgraph.[19]

Beckett–Gray code
Another type of Gray code, the Beckett–Gray code, is named for Irish playwright Samuel Beckett, who was
interested in symmetry. His play "Quad" features four actors and is divided into sixteen time periods. Each period
ends with one of the four actors entering or leaving the stage. The play begins with an empty stage, and Beckett
wanted each subset of actors to appear on stage exactly once.[20] Clearly the set of actors currently on stage can be
represented by a 4-bit binary Gray code. Beckett, however, placed an additional restriction on the script: he wished
the actors to enter and exit so that the actor who had been on stage the longest would always be the one to exit. The
actors could then be represented by a first in, first out queue, so that (of the actors onstage) the actor being dequeued
is always the one who was enqueued first.[20] Beckett was unable to find a Beckett–Gray code for his play, and
indeed, an exhaustive listing of all possible sequences reveals that no such code exists for n = 4. It is known today
that such codes do exist for n = 2, 5, 6, 7, and 8, and do not exist for n = 3 or 4. An example of an 8-bit Beckett–Gray
code can be found in Knuth's Art of Computer Programming.[5] According to Sawada and Wong, the search space
for n = 6 can be explored in 15 hours, and more than 9,500 solutions for the case n = 7 have been found.[21]

http://en.wikipedia.org/w/index.php?title=Coroutines
http://en.wikipedia.org/w/index.php?title=Lov%C3%A1sz_conjecture
http://en.wikipedia.org/w/index.php?title=Vertex-transitive_graph
http://en.wikipedia.org/w/index.php?title=Vertex-transitive_graph
http://en.wikipedia.org/w/index.php?title=Automorphism
http://en.wikipedia.org/w/index.php?title=Samuel_Beckett
http://en.wikipedia.org/w/index.php?title=Symmetry
http://en.wikipedia.org/w/index.php?title=Quad_%28play%29
http://en.wikipedia.org/w/index.php?title=FIFO
http://en.wikipedia.org/w/index.php?title=Queue_%28data_structure%29

Gray code 35

Snake-in-the-box codes
Snake-in-the-box codes, or snakes, are the sequences of nodes of induced paths in an n-dimensional hypercube
graph, and coil-in-the-box codes, or coils, are the sequences of nodes of induced cycles in a hypercube. Viewed as
Gray codes, these sequences have the property of being able to detect any single-bit coding error. Codes of this type
were first described by W. H. Kautz in the late 1950s;[22] since then, there has been much research on finding the
code with the largest possible number of codewords for a given hypercube dimension.

Single-track Gray code
Yet another kind of Gray code is the single-track Gray code (STGC) developed by N. B. Spedding (NZ Patent
264738 - October 28, 1994)[23] and refined by Hiltgen, Paterson and Brandestini in "Single-track Gray codes"
(1996).[24] The STGC is a cyclical list of P unique binary encodings of length n such that two consecutive words
differ in exactly one position, and when the list is examined as a P x n matrix, each column is a cyclic shift of the
first column.[25]

The name comes from their use with rotary encoders, where a number of tracks are being sensed by contacts,
resulting for each in an output of 0 or 1. To reduce noise due to different contacts not switching at exactly the same
moment in time, one preferably sets up the tracks so that the data output by the contacts are in Gray code. To get
high angular accuracy, one needs lots of contacts; in order to achieve at least 1 degree accuracy, one needs at least
360 distinct positions per revolution, which requires a minimum of 9 bits of data, and thus the same number of
contacts.
If all contacts are placed at the same angular position, then 9 tracks are needed to get a standard BRGC with at least
1 degree accuracy. However, if the manufacturer moves a contact to a different angular position (but at the same
distance from the center shaft), then the corresponding "ring pattern" needs to be rotated the same angle to give the
same output. If the most significant bit (the inner ring in Figure 1) is rotated enough, it exactly matches the next ring
out. Since both rings are then identical, the inner ring can be cut out, and the sensor for that ring moved to the
remaining, identical ring (but offset at that angle from the other sensor on that ring). Those 2 sensors on a single ring
make a quadrature encoder. That reduces the number of tracks for a "1 degree resolution" angular encoder to 8
tracks. Reducing the number of tracks still further can't be done with BRGC.
For many years, Torsten Sillke and other mathematicians believed that it was impossible to encode position on a
single track such that consecutive positions differed at only a single sensor, except for the 2-sensor, 1-track
quadrature encoder. So for applications where 8 tracks were too bulky, people used single-track incremental
encoders (quadrature encoders) or 2-track "quadrature encoder + reference notch" encoders.
N. B. Spedding, however, registered a patent in 1994 with several examples showing that it was possible.[23]

Although it is not possible to distinguish 2n positions with n sensors on a single track, it is possible to distinguish
close to that many. For example, when n is itself a power of 2, n sensors can distinguish 2n−2n positions. Hiltgen and
Paterson published a paper in 2001 exhibiting a single-track gray code with exactly 360 angular positions,
constructed using 9 sensors.[26] Since this number is larger than 28 = 256, more than 8 sensors are required by any
code, although a BRGC could distinguish 512 positions with 9 sensors. An STGC for P = 30 and n = 5 is
reproduced here:

http://en.wikipedia.org/w/index.php?title=Snake-in-the-box
http://en.wikipedia.org/w/index.php?title=Induced_path
http://en.wikipedia.org/w/index.php?title=Hypercube_graph
http://en.wikipedia.org/w/index.php?title=Hypercube_graph
http://en.wikipedia.org/w/index.php?title=Cycle_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Matrix_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Rotary_encoder
http://en.wikipedia.org/w/index.php?title=Torsten_Sillke

Gray code 36

10000

10100

11100

11110

11010

11000

01000

01010

01110

01111

01101

01100

00100

00101

00111

10111

10110

00110

00010

10010

10011

11011

01011

00011

00001

01001

11001

11101

10101

10001

Note that each column is a cyclic shift of the first column, and from any row to the next row only one bit changes.[27]

The single-track nature (like a code chain) is useful in the fabrication of these wheels (compared to BRGC), as only
one track is needed, thus reducing their cost and size. The Gray code nature is useful (compared to chain codes, also
called De Bruijn sequences), as only one sensor will change at any one time, so the uncertainty during a transition

http://en.wikipedia.org/w/index.php?title=File%3AEnkelspoors-Graycode.svg
http://en.wikipedia.org/w/index.php?title=Chain_code
http://en.wikipedia.org/w/index.php?title=De_Bruijn_sequence

Gray code 37

between two discrete states will only be plus or minus one unit of angular measurement the device is capable of
resolving.[28]

Notes
[1] F. Gray. Pulse code communication, March 17, 1953 (filed Nov. 1947). U.S. Patent 2,632,058 (http:/ / www. google. com/

patents?vid=2632058)
[2] J. Breckman. Encoding Circuit, Jan 31, 1956 (filed Dec. 1953). U.S. Patent 2,733,432 (http:/ / www. google. com/ patents?vid=2733432)
[3] E. A. Ragland et al. Direction-Sensitive Binary Code Position Control System, Feb. 11, 1958 (filed Oct. 1953). U.S. Patent 2,823,345 (http:/ /

www. google. com/ patents?vid=2823345)
[4] S. Reiner et al. Automatic Rectification System, Jun 24, 1958 (filed Jan. 1954). U.S. Patent 2,839,974 (http:/ / www. google. com/

patents?vid=2839974)
[5] Knuth, Donald E. "Generating all n-tuples." The Art of Computer Programming, Volume 4A: Enumeration and Backtracking, pre-fascicle 2a,

October 15, 2004. (http:/ / www-cs-faculty. stanford. edu/ ~knuth/ fasc2a. ps. gz)
[6] Cattermole, K. W. (1969). Principles of Pulse Code Modulation. New York: American Elsevier. ISBN 0-444-19747-8.
[7] Goodall, W. M. (1951). "Television by Pulse Code Modulation". Bell Sys. Tech. J. 30: 33–49.
[8] Wakerly, John F (1994). Digital Design: Principles & Practices. New Jersey: Prentice Hall. pp. 222, 48–49. ISBN 0-13-211459-3. Note that

the two page sections taken together say that K-maps are labeled with Gray code. The first section says that they are labeled with a code that
changes only one bit between entries and the second section says that such a code is called Gray code.

[9] "Synchronization in Digital Logic Circuits (http:/ / www. stanford. edu/ class/ ee183/ handouts_spr2003/ synchronization_pres. pdf) by Ryan
Donohue

[10] http:/ / www. google. com/ patents?vid=3020481
[11] Mehta, H.; Owens, R.M. & Irwin, M.J. (1996), Some issues in gray code addressing (http:/ / ieeexplore. ieee. org/ xpls/ abs_all. jsp?tp=&

arnumber=497616& isnumber=10625), in the Proceedings of the 6th Great Lakes Symposium on VLSI (GLSVLSI 96), IEEE Computer
Society,pp. 178

[12] http:/ / www. google. com/ patents?vid=5754614
[13] The Gray Code by R. W. Doran (http:/ / www. cs. auckland. ac. nz/ CDMTCS/ / researchreports/ 304bob. pdf)
[14] Guan, Dah-Jyh (1998). "Generalized Gray Codes with Applications" (http:/ / nr. stpi. org. tw/ ejournal/ ProceedingA/ v22n6/ 841-848. pdf)

(PDF). Proc. Natl. Sci. Counc. Repub. Of China (A) 22: 841–848. .
[15] Girish S. Bhat and Carla D. Savage (1996). "Balanced Gray codes" (http:/ / www. combinatorics. org/ Volume_3/ Abstracts/ v3i1r25. html).

Electronic Journal of Combinatorics 3 (1): R25. .
[16] I. N Suparta (2005). "A simple proof for the existence of exponentially balanced Gray codes". Electronic Journal of Combinatorics 12.
[17] M. Flahive and B. Bose (2007). "Balancing cyclic R-ary Gray codes". Electronic Journal of Combinatorics 14.
[18] C. D Savage and P. Winkler (1995). "Monotone Gray codes and the middle levels problem". Journal of Combinatorial Theory, Series A 70

(2): 230–248. doi:10.1016/0097-3165(95)90091-8. ISSN 0097-3165.
[19] C. D Savage (1997). Long cycles in the middle two levels of the Boolean lattice.
[20] Goddyn, Luis (1999). "MATH 343 Applied Discrete Math Supplementary Materials" (http:/ / www. math. sfu. ca/ ~goddyn/ Courses/ 343/

supMaterials. pdf) (PDF). Dept. of Math, Simon Fraser U. .
[21] Wong, J. (2007). "A Fast Algorithm to generate Beckett-Gray codes". Electronic Notes in Discrete Mathematics 29: 571–577.

doi:10.1016/j.endm.2007.07.091.
[22] Kautz, W. H. (1958). "Unit-distance error-checking codes". IRE Trans. Elect. Comput. 7: 177–180.
[23] A position encoder (http:/ / www. winzurf. co. nz/ Single_Track_Grey_Code_Patent/ Single_track_Grey_code_encoder_patent. pdf). 1994. .
[24] Hiltgen, Alain P.; Kenneth G. Paterson, Marco Brandestini (1996). "Single-Track Gray Codes" (http:/ / ieeexplore. ieee. org/ iel1/ 18/

11236/ 00532900. pdf) (PDF). IEEE Transactions on Information Theory 42 (5): 1555–1561. doi:10.1109/18.532900. .
[25] Etzion, Tuvi; Moshe Schwartz (1999). "The Structure of Single-Track Gray Codes" (http:/ / www. cs. technion. ac. il/ ~etzion/ PUB/ Gray2.

pdf) (PDF). IEEE Transactions on Information Theory 45 (7): 2383–2396. doi:10.1109/18.796379. .
[26] Hiltgen, Alain P.; Kenneth G. Paterson (2001). "Single-Track Circuit Codes" (http:/ / www. hpl. hp. com/ techreports/ 2000/ HPL-2000-81.

pdf) (PDF). IEEE Transactions on Information Theory 47 (6): 2587–2595. doi:10.1109/18.945274. .
[27] "Venn Diagram Survey — Symmetric Diagrams" (http:/ / www. combinatorics. org/ Surveys/ ds5/ VennSymmEJC. html). Electronic

Journal of Combinatorics. 2001. .
[28] Alciatore, David G.; Michael B. Histand (1999). McGraw-Hill Education - Europe. ISBN 978-0-07-131444-2. http:/ / mechatronics.

colostate. edu/ .

http://www.google.com/patents?vid=2632058
http://www.google.com/patents?vid=2632058
http://www.google.com/patents?vid=2733432
http://www.google.com/patents?vid=2823345
http://www.google.com/patents?vid=2823345
http://www.google.com/patents?vid=2839974
http://www.google.com/patents?vid=2839974
http://www-cs-faculty.stanford.edu/~knuth/fasc2a.ps.gz
http://www.stanford.edu/class/ee183/handouts_spr2003/synchronization_pres.pdf
http://www.google.com/patents?vid=3020481
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=497616&isnumber=10625
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=497616&isnumber=10625
http://www.google.com/patents?vid=5754614
http://www.cs.auckland.ac.nz/CDMTCS//researchreports/304bob.pdf
http://nr.stpi.org.tw/ejournal/ProceedingA/v22n6/841-848.pdf
http://www.combinatorics.org/Volume_3/Abstracts/v3i1r25.html
http://en.wikipedia.org/w/index.php?title=Electronic_Journal_of_Combinatorics
http://en.wikipedia.org/w/index.php?title=Electronic_Journal_of_Combinatorics
http://en.wikipedia.org/w/index.php?title=Electronic_Journal_of_Combinatorics
http://en.wikipedia.org/w/index.php?title=Journal_of_Combinatorial_Theory%2C_Series_A
http://www.math.sfu.ca/~goddyn/Courses/343/supMaterials.pdf
http://www.math.sfu.ca/~goddyn/Courses/343/supMaterials.pdf
http://www.winzurf.co.nz/Single_Track_Grey_Code_Patent/Single_track_Grey_code_encoder_patent.pdf
http://ieeexplore.ieee.org/iel1/18/11236/00532900.pdf
http://ieeexplore.ieee.org/iel1/18/11236/00532900.pdf
http://www.cs.technion.ac.il/~etzion/PUB/Gray2.pdf
http://www.cs.technion.ac.il/~etzion/PUB/Gray2.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-81.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-81.pdf
http://www.combinatorics.org/Surveys/ds5/VennSymmEJC.html
http://en.wikipedia.org/w/index.php?title=Electronic_Journal_of_Combinatorics
http://en.wikipedia.org/w/index.php?title=Electronic_Journal_of_Combinatorics
http://mechatronics.colostate.edu/.
http://mechatronics.colostate.edu/.

Gray code 38

References
• Black, Paul E. Gray code (http:/ / www. nist. gov/ dads/ HTML/ graycode. html). 25 February 2004. NIST.
• Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 22.3. Gray Codes" (http:/ / apps.

nrbook. com/ empanel/ index. html#pg=1166). Numerical Recipes: The Art of Scientific Computing (3rd ed.).
New York: Cambridge University Press. ISBN 978-0-521-88068-8.

• Savage, Carla (1997). "A Survey of Combinatorial Gray Codes" (http:/ / www. csc. ncsu. edu/ faculty/ savage/
AVAILABLE_FOR_MAILING/ survey. ps). SIAM Rev. 39 (4): 605–629. doi:10.1137/S0036144595295272.
JSTOR 2132693.

• Wilf, Herbert S. (1989). "Chapters 1-3". Combinatorial algorithms: an update. SIAM. ISBN 0-89871-231-9.

External links
• "Gray Code" demonstration (http:/ / demonstrations. wolfram. com/ BinaryGrayCode/) by Michael Schreiber,

Wolfram Demonstrations Project (with Mathematica implementation). 2007.
• NIST Dictionary of Algorithms and Data Structures: Gray code (http:/ / www. nist. gov/ dads/ HTML/ graycode.

html)
• Hitch Hiker's Guide to Evolutionary Computation, Q21: What are Gray codes, and why are they used? (http:/ /

www. aip. de/ ~ast/ EvolCompFAQ/ Q21. htm), including C code to convert between binary and BRGC
• Subsets or Combinations (http:/ / www. theory. cs. uvic. ca/ ~cos/ gen/ comb. html) Can generate BRGC strings
• "The Structure of Single-Track Gray Codes" (http:/ / www. cs. technion. ac. il/ users/ wwwb/ cgi-bin/ tr-info.

cgi?1998/ CS/ CS0937) by Moshe Schwartz, Tuvi Etzion
• Single-Track Circuit Codes (http:/ / www. hpl. hp. com/ techreports/ 2000/ HPL-2000-81. html) by Hiltgen, Alain

P.; Paterson, Kenneth G.
• Dragos A. Harabor uses Gray codes in a 3D digitizer (http:/ / www. ugcs. caltech. edu/ ~dragos/ 3DP/ coord.

html).
• single-track gray codes, binary chain codes (Lancaster 1994 (http:/ / tinaja. com/ text/ chain01. html)), and linear

feedback shift registers are all useful in finding one's absolute position on a single-track rotary encoder (or other
position sensor).

• Computing Binary Combinatorial Gray Codes Via Exhaustive Search With SAT Solvers (http:/ / ieeexplore. ieee.
org/ xpls/ abs_all. jsp?isnumber=4475352& arnumber=4475394& count=44& index=39) by Zinovik, I.;
Kroening, D.; Chebiryak, Y.

• AMS Column: Gray codes (http:/ / www. ams. org/ featurecolumn/ archive/ gray. html)
• Optical Encoder Wheel Generator (http:/ / www. bushytails. net/ ~randyg/ encoder/ encoderwheel. html)
• ProtoTalk.net - Understanding Quadrature Encoding (http:/ / prototalk. net/ forums/ showthread. php?t=78) -

Covers quadrature encoding in more detail with a focus on robotic applications

http://www.nist.gov/dads/HTML/graycode.html
http://en.wikipedia.org/w/index.php?title=NIST
http://apps.nrbook.com/empanel/index.html#pg=1166
http://apps.nrbook.com/empanel/index.html#pg=1166
http://www.csc.ncsu.edu/faculty/savage/AVAILABLE_FOR_MAILING/survey.ps
http://www.csc.ncsu.edu/faculty/savage/AVAILABLE_FOR_MAILING/survey.ps
http://en.wikipedia.org/w/index.php?title=Herbert_Wilf
http://en.wikipedia.org/w/index.php?title=Society_for_Industrial_and_Applied_Mathematics
http://demonstrations.wolfram.com/BinaryGrayCode/
http://en.wikipedia.org/w/index.php?title=Wolfram_Demonstrations_Project
http://www.nist.gov/dads/HTML/graycode.html
http://www.nist.gov/dads/HTML/graycode.html
http://www.aip.de/~ast/EvolCompFAQ/Q21.htm
http://www.aip.de/~ast/EvolCompFAQ/Q21.htm
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://www.theory.cs.uvic.ca/~cos/gen/comb.html
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1998/CS/CS0937
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1998/CS/CS0937
http://www.hpl.hp.com/techreports/2000/HPL-2000-81.html
http://www.ugcs.caltech.edu/~dragos/3DP/coord.html
http://www.ugcs.caltech.edu/~dragos/3DP/coord.html
http://en.wikipedia.org/w/index.php?title=Chain_code
http://tinaja.com/text/chain01.html
http://en.wikipedia.org/w/index.php?title=Linear_feedback_shift_register
http://en.wikipedia.org/w/index.php?title=Linear_feedback_shift_register
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4475352&arnumber=4475394&count=44&index=39
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4475352&arnumber=4475394&count=44&index=39
http://www.ams.org/featurecolumn/archive/gray.html
http://www.bushytails.net/~randyg/encoder/encoderwheel.html
http://prototalk.net/forums/showthread.php?t=78

Hexadecimal 39

Hexadecimal
In mathematics and computer science, hexadecimal (also base 16, or hex) is a positional numeral system with a
radix, or base, of 16. It uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to nine,
and A, B, C, D, E, F (or alternatively a–f) to represent values ten to fifteen. For example, the hexadecimal number
2AF3 is equal, in decimal, to (2 × 163) + (10 × 162) + (15 × 161) + (3 × 160), or 10995.
Each hexadecimal digit represents four binary digits (bits), and the primary use of hexadecimal notation is a
human-friendly representation of binary-coded values in computing and digital electronics. One hexadecimal digit
represents a nibble, which is half of an octet or byte (8 bits). For example, byte values can range from 0 to 255
(decimal), but may be more conveniently represented as two hexadecimal digits in the range 00 to FF. Hexadecimal
is also commonly used to represent computer memory addresses.

Representation

Written representation

Using 0-9 and A-F

0hex = 0dec = 0oct 0 0 0 0

1hex = 1dec = 1oct 0 0 0 1

2hex = 2dec = 2oct 0 0 1 0

3hex = 3dec = 3oct 0 0 1 1

4hex = 4dec = 4oct 0 1 0 0

5hex = 5dec = 5oct 0 1 0 1

6hex = 6dec = 6oct 0 1 1 0

7hex = 7dec = 7oct 0 1 1 1

8hex = 8dec = 10oct 1 0 0 0

9hex = 9dec = 11oct 1 0 0 1

Ahex = 10dec = 12oct 1 0 1 0

Bhex = 11dec = 13oct 1 0 1 1

Chex = 12dec = 14oct 1 1 0 0

Dhex = 13dec = 15oct 1 1 0 1

Ehex = 14dec = 16oct 1 1 1 0

Fhex = 15dec = 17oct 1 1 1 1

In situations where there is no context, hexadecimal numbers can be ambiguous and confused with numbers
expressed in other bases. There are several conventions for expressing values unambiguously. A numerical subscript
(itself written in decimal) can give the base explicitly: 15910 is decimal 159; 15916 is hexadecimal 159, which is
equal to 34510. Other authors prefer a text subscript, such as 159decimal and 159hex, or 159d and 159h.
In linear text systems, such as those used in most computer programming environments, a variety of methods have
arisen:

http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Radix
http://en.wikipedia.org/w/index.php?title=16_%28number%29
http://en.wikipedia.org/w/index.php?title=Positional_notation
http://en.wikipedia.org/w/index.php?title=Numeral_system
http://en.wikipedia.org/w/index.php?title=Radix
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Binary_code
http://en.wikipedia.org/w/index.php?title=Nibble
http://en.wikipedia.org/w/index.php?title=Octet_%28computing%29
http://en.wikipedia.org/w/index.php?title=Byte
http://en.wikipedia.org/w/index.php?title=Memory_address
http://en.wikipedia.org/w/index.php?title=0_%28number%29
http://en.wikipedia.org/w/index.php?title=1_%28number%29
http://en.wikipedia.org/w/index.php?title=2_%28number%29
http://en.wikipedia.org/w/index.php?title=3_%28number%29
http://en.wikipedia.org/w/index.php?title=4_%28number%29
http://en.wikipedia.org/w/index.php?title=5_%28number%29
http://en.wikipedia.org/w/index.php?title=6_%28number%29
http://en.wikipedia.org/w/index.php?title=7_%28number%29
http://en.wikipedia.org/w/index.php?title=8_%28number%29
http://en.wikipedia.org/w/index.php?title=9_%28number%29
http://en.wikipedia.org/w/index.php?title=10_%28number%29
http://en.wikipedia.org/w/index.php?title=11_%28number%29
http://en.wikipedia.org/w/index.php?title=12_%28number%29
http://en.wikipedia.org/w/index.php?title=13_%28number%29
http://en.wikipedia.org/w/index.php?title=14_%28number%29
http://en.wikipedia.org/w/index.php?title=15_%28number%29

Hexadecimal 40

• In URIs (including URLs), character codes are written as hexadecimal pairs prefixed with %:
http://www.example.com/name%20with%20spaces where %20 is the space (blank) character (code
value 20 in hex, 32 in decimal).

• In XML and XHTML, characters can be expressed as hexadecimal numeric character references using the
notation ode;, where code is the 1- to 6-digit hex number assigned to the character in the Unicode
standard. Thus ’ represents the curled right single quote (Unicode value 2019 in hex, 8217 in
decimal).

• Color references in HTML and CSS and X Window can be expressed with six hexadecimal digits (two each for
the red, green, and blue components, in that order) prefixed with #: white, for example, is represented #FFFFFF
.[1] CSS allows 3-hexdigit abbreviations with one hexdigit per component: #FA3 abbreviates #FFAA33 (a golden
orange:).

• *nix (Unix and related) shells, AT&T assembly language, and likewise the C programming language, which was
designed for Unix (and the syntactic descendants of C[2]) use the prefix 0x for numeric constants represented in
hex: 0x5A3. Character and string constants may express character codes in hexadecimal with the prefix \x
followed by two hex digits: '\x1B' represents the Esc control character; "\x1B[0m\x1B[25;1H" is a
string containing 11 characters (plus a trailing NUL to mark the end of the string) with two embedded Esc
characters.[3] To output an integer as hexadecimal with the printf function family, the format conversion code %X
or %x is used.

• In the Unicode standard, a character value is represented with U+ followed by the hex value:
U+20AC is the Euro sign (€).

• In MIME (e-mail extensions) quoted-printable encoding, characters that cannot be represented as literal ASCII
characters are represented by their codes as two hexadecimal digits (in ASCII) prefixed by an equal to sign =, as
in Espa=F1a to send "España" (Spain). (Hexadecimal F1, equal to decimal 241, is the code number for the
lower case n with tilde in the ISO/IEC 8859-1 character set.)

• In Intel-derived assembly languages, hexadecimal is denoted with a suffixed H or h: FFh or 05A3H. Some
implementations require a leading zero when the first hexadecimal digit character is not a decimal digit: 0FFh

• Other assembly languages (6502, Motorola), Pascal, Delphi, some versions of BASIC (Commodore), GML and
Forth use $ as a prefix: $5A3.

• Some assembly languages (Microchip) use the notation H'ABCD' (for ABCD16).
• Ada and VHDL enclose hexadecimal numerals in based "numeric quotes": 16#5A3#. For bit vector constants

VHDL uses the notation x"5A3".[4]

• Verilog represents hexadecimal constants in the form 8'hFF, where 8 is the number of bits in the value and FF is
the hexadecimal constant.

• Modula-2 and some other languages use # as a prefix: #05A3
• The Smalltalk language uses the prefix 16r: 16r5A3
• PostScript and the Bourne shell and its derivatives denote hex with prefix 16#: 16#5A3. For PostScript, binary

data (such as image pixels) can be expressed as unprefixed consecutive hexadecimal pairs:
AA213FD51B3801043FBC...

• In early systems when a Macintosh crashed, one or two lines of hexadecimal code would be displayed under the
Sad Mac to tell the user what went wrong.

• Common Lisp uses the prefixes #x and #16r.
• MSX BASIC,[5] QuickBASIC, FreeBASIC and Visual Basic prefix hexadecimal numbers with &H: &H5A3
• BBC BASIC and Locomotive BASIC use & for hex.[6]

• TI-89 and 92 series uses a 0h prefix: 0h5A3
• The most common format for hexadecimal on IBM mainframes (zSeries) and midrange computers (IBM System

i) running the traditional OS's (zOS, zVSE, zVM, TPF, IBM i) is X'5A3', and is used in Assembler, PL/I,
COBOL, JCL, scripts, commands and other places. This format was common on other (and now obsolete) IBM

http://en.wikipedia.org/w/index.php?title=URI
http://en.wikipedia.org/w/index.php?title=URL
http://en.wikipedia.org/w/index.php?title=Character_encoding
http://en.wikipedia.org/w/index.php?title=Space_%28punctuation%29%23Space_characters_and_digital_typography
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=XHTML
http://en.wikipedia.org/w/index.php?title=Numeric_character_reference
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Cascading_Style_Sheets
http://en.wikipedia.org/w/index.php?title=X_window_system
http://en.wikipedia.org/w/index.php?title=%2Anix
http://en.wikipedia.org/w/index.php?title=AT%26T_Corporation
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Escape_character
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=Euro_sign
http://en.wikipedia.org/w/index.php?title=MIME
http://en.wikipedia.org/w/index.php?title=Quoted-printable
http://en.wikipedia.org/w/index.php?title=ASCII
http://en.wikipedia.org/w/index.php?title=Assembly_language
http://en.wikipedia.org/w/index.php?title=MOS_Technology_6502
http://en.wikipedia.org/w/index.php?title=Motorola
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Object_Pascal
http://en.wikipedia.org/w/index.php?title=BASIC
http://en.wikipedia.org/w/index.php?title=Commodore_BASIC
http://en.wikipedia.org/w/index.php?title=Game_Maker
http://en.wikipedia.org/w/index.php?title=Forth_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=VHDL
http://en.wikipedia.org/w/index.php?title=VHDL
http://en.wikipedia.org/w/index.php?title=Verilog
http://en.wikipedia.org/w/index.php?title=Modula-2
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=PostScript
http://en.wikipedia.org/w/index.php?title=Bourne_shell
http://en.wikipedia.org/w/index.php?title=Pixel
http://en.wikipedia.org/w/index.php?title=Macintosh
http://en.wikipedia.org/w/index.php?title=Sad_Mac
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=MSX_BASIC
http://en.wikipedia.org/w/index.php?title=QuickBASIC
http://en.wikipedia.org/w/index.php?title=FreeBASIC
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=BBC_BASIC
http://en.wikipedia.org/w/index.php?title=Locomotive_BASIC
http://en.wikipedia.org/w/index.php?title=TI-89
http://en.wikipedia.org/w/index.php?title=ZSeries
http://en.wikipedia.org/w/index.php?title=IBM_System_i
http://en.wikipedia.org/w/index.php?title=IBM_System_i
http://en.wikipedia.org/w/index.php?title=Z/OS
http://en.wikipedia.org/w/index.php?title=VSE_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Z/VM
http://en.wikipedia.org/w/index.php?title=Transaction_Processing_Facility
http://en.wikipedia.org/w/index.php?title=IBM_i
http://en.wikipedia.org/w/index.php?title=PL/I
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Job_Control_Language

Hexadecimal 41

systems as well. Occasionally quotation marks were used instead of apostrophes.
• Donald Knuth introduced the use of a particular typeface to represent a particular radix in his book The

TeXbook.[7] Hexadecimal representations are written there in a typewriter typeface: 5A3
• Any IPv6 address can be written as eight groups of four hexadecimal digits, where each group is separated by a

colon (:). This, for example, is a valid IPv6 address: 2001:0db8:85a3:0000:0000:8a2e:0370:7334
• ALGOL 68 uses the prefix 16r to denote hexadecimal numbers: 16r5a3. Binary, quaternary (base-4) and octal

numbers can be specified similarly.
There is no universal convention to use lowercase or uppercase for the letter digits, and each is prevalent or preferred
in particular environments by community standards or convention.

Early written representations

Bruce Alan Martin's hexadecimal notation
proposal

The choice of the letters A through F to represent the digits above nine
was not universal in the early history of computers.

• During the 1950s, some installations favored using the digits 0
through 5 with a macron character ("¯") to denote the values 10–15.

• Bendix G-15 computers used the letters U through Z.
• The Librascope LGP-30 used the letters F, G, J, K, Q and W.[8]

• Bruce Alan Martin of Brookhaven National Laboratory considered
the choice of A–F "ridiculous" and in a 1968 letter to the editor of
the CACM proposed an entirely new set of symbols based on the bit
locations, which did not gain much acceptance.[9]

• Soviet programmable calculators Б3-34 and similar used the symbols "−", "L", "C", "Г", "E", " " (space) on their
displays.

Verbal and digital representations
There are no traditional numerals to represent the quantities from ten to fifteen — letters are used as a substitute —
and most European languages lack non-decimal names for the numerals above ten. Even though English has names
for several non-decimal powers (pair for the first binary power, score for the first vigesimal power, dozen, gross, and
great gross for the first three duodecimal powers), no English name describes the hexadecimal powers (decimal 16,
256, 4096, 65536, ...). Some people read hexadecimal numbers digit by digit like a phone number: 4DA is
"four-dee-ay". However, the letter A sounds like "eight", C sounds like "three", and D can easily be mistaken for the
"-ty" suffix: Is it 4D or forty? Other people avoid confusion by using the NATO phonetic alphabet: 4DA is
"four-delta-alfa", the Joint Army/Navy Phonetic Alphabet ("four-dog-able"), or a similar ad hoc system.

Hexadecimal finger-counting scheme.

Systems of counting on digits have been devised for both binary and
hexadecimal. Arthur C. Clarke suggested using each finger as an on/off
bit, allowing finger counting from zero to 102310 on ten fingers.
Another system for counting up to FF16 (25510) is illustrated on the
right; it seems to be an extension of an existing system for counting in
twelves (dozens and grosses), that is common in South Asia and
elsewhere.

Signs

The hexadecimal system can express negative numbers the same way
as in decimal: −2A to represent −4210 and so on.

http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=IPv6_address
http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=File%3ABruce_Martin_hexadecimal_notation_proposal.png
http://en.wikipedia.org/w/index.php?title=Macron
http://en.wikipedia.org/w/index.php?title=Bendix_G-15
http://en.wikipedia.org/w/index.php?title=LGP-30
http://en.wikipedia.org/w/index.php?title=Bruce_Alan_Martin
http://en.wikipedia.org/w/index.php?title=Brookhaven_National_Laboratory
http://en.wikipedia.org/w/index.php?title=Communications_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Programmable_calculator
http://en.wikipedia.org/w/index.php?title=Elektronika_B3-34
http://en.wikipedia.org/w/index.php?title=European
http://en.wikipedia.org/w/index.php?title=2_%28number%29
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=20_%28number%29
http://en.wikipedia.org/w/index.php?title=Vigesimal
http://en.wikipedia.org/w/index.php?title=Dozen
http://en.wikipedia.org/w/index.php?title=Gross_%28unit%29
http://en.wikipedia.org/w/index.php?title=Great_gross
http://en.wikipedia.org/w/index.php?title=Duodecimal
http://en.wikipedia.org/w/index.php?title=ICAO_spelling_alphabet
http://en.wikipedia.org/w/index.php?title=Joint_Army/Navy_Phonetic_Alphabet
http://en.wikipedia.org/w/index.php?title=File%3AHexadecimal-counting.jpg
http://en.wikipedia.org/w/index.php?title=Digit_%28anatomy%29
http://en.wikipedia.org/w/index.php?title=Arthur_C._Clarke

Hexadecimal 42

However, some prefer instead to use the hexadecimal notation to express the exact bit patterns used in the processor,
so a sequence of hexadecimal digits may represent a signed or even a floating point value. This way, the negative
number −4210 can be written as FFFF FFD6 in a 32-bit CPU register (in two's-complement), as C228 0000 in a
32-bit FPU register or C045 0000 0000 0000 in a 64-bit FPU register (in the IEEE floating-point standard).

Hexadecimal exponential notation
Just as decimal numbers can be represented in exponential notation so too can hexadecimal. By convention, the letter
p represents times two raised to the power of, whereas e serves a similar purpose in decimal. The number after the p
is decimal and represents the binary exponent.
Usually the number is normalised: that is, the leading hexadecimal digit is 1 (unless the value is exactly 0).
Example: 1.3DEp42 represents 1.3DE16 × 242.
Hexadecimal exponential notation is required by the IEEE 754 binary floating-point standard. This notation can be
produced by some versions of the printf family of functions by using the %a conversion.

Conversion

Binary conversion
Most computers manipulate binary data, but it is difficult for humans to work with the large number of digits for
even a relatively small binary number. Although most humans are familiar with the base 10 system, it is much easier
to map binary to hexadecimal than to decimal because each hexadecimal digit maps to a whole number of bits (410).
This example converts 11112 to base ten. Since each position in a binary numeral can contain either a 1 or a 0, its
value may be easily determined by its position from the right:
• 00012 = 110
• 00102 = 210
• 01002 = 410
• 10002 = 810
Therefore:

11112 = 810 + 410 + 210 + 110

= 1510

With little practice, mapping 11112 to F16 in one step becomes easy: see table in Written representation. The
advantage of using hexadecimal rather than decimal increases rapidly with the size of the number. When the number
becomes large, conversion to decimal is very tedious. However, when mapping to hexadecimal, it is trivial to regard
the binary string as 4-digit groups and map each to a single hexadecimal digit.
This example shows the conversion of a binary number to decimal, mapping each digit to the decimal value, and
adding the results.

010111101011010100102 = 26214410 + 6553610 + 3276810 + 1638410 + 819210 + 204810 + 51210 + 25610 + 6410 + 1610 + 210

= 38792210

Compare this to the conversion to hexadecimal, where each group of four digits can be considered independently,
and converted directly:

http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=Signedness
http://en.wikipedia.org/w/index.php?title=Floating_point
http://en.wikipedia.org/w/index.php?title=Processor_register
http://en.wikipedia.org/w/index.php?title=Two%27s-complement
http://en.wikipedia.org/w/index.php?title=Floating_point_unit
http://en.wikipedia.org/w/index.php?title=IEEE_floating-point_standard
http://en.wikipedia.org/w/index.php?title=Exponential_notation
http://en.wikipedia.org/w/index.php?title=IEEE_754-2008
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Positional_notation

Hexadecimal 43

010111101011010100102 = 0101 1110 1011 0101 00102

= 5 E B 5 216

= 5EB5216

The conversion from hexadecimal to binary is equally direct.
The octal system can also be useful as a tool for people who need to deal directly with binary computer data. Octal
represents data as three bits per character, rather than four.

Division-remainder in source base
As with all bases there is a simple algorithm for converting a representation of a number to hexadecimal by doing
integer division and remainder operations in the source base. In theory, this is possible from any base, but for most
humans only decimal and for most computers only binary (which can be converted by far more efficient methods)
can be easily handled with this method.
Let d be the number to represent in hexadecimal, and the series hihi−1...h2h1 be the hexadecimal digits representing
the number.
1.1. i := 1
2. hi := d mod 16
3. d := (d−hi) / 16
4. If d = 0 (return series hi) else increment i and go to step 2
"16" may be replaced with any other base that may be desired.
The following is a JavaScript implementation of the above algorithm for converting any number to a hexadecimal in
String representation. Its purpose is to illustrate the above algorithm. To work with data seriously, however, it is
much more advisable to work with bitwise operators.

function toHex(d) {

 var r = d % 16;

 var result;

 if (d-r == 0)

 result = toChar(r);

 else

 result = toHex((d-r)/16) + toChar(r);

 return result;

}

function toChar(n) {

 const alpha = "0123456789ABCDEF";

 return alpha.charAt(n);

}

http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Bitwise_operators

Hexadecimal 44

Addition and multiplication

A hexadecimal multiplication table

It is also possible to make the conversion by assigning each place in
the source base the hexadecimal representation of its place value and
then performing multiplication and addition to get the final
representation. That is, to convert the number B3AD to decimal one
can split the hexadecimal number into its digits: B (1110), 3 (310), A
(1010) and D (1310), and then get the final result by multiplying each
decimal representation by 16p, where p is the corresponding hex digit
position, counting from right to left, beginning with 0. In this case we
have B3AD = (11 × 163) + (3 × 162) + (10 × 161) + (13 × 160), which
is 45997 base 10.

Tools for conversion

Most modern computer systems with graphical user interfaces provide
a built-in calculator utility, capable of performing conversions between various radices, in general including
hexadecimal.

In Microsoft Windows, the Calculator utility can be set to Scientific mode (called Programmer mode in some
versions), which allows conversions between radix 16 (hexadecimal), 10 (decimal), 8 (octal) and 2 (binary), the
bases most commonly used by programmers. In Scientific Mode, the on-screen numeric keypad includes the
hexadecimal digits A through F, which are active when "Hex" is selected. In hex mode, however, the Windows
Calculator supports only integers.

Real numbers
As with other numeral systems, the hexadecimal system can be used to represent rational numbers, although
recurring digits are common since sixteen (10h) has only a single prime factor (two):

1/2 = 0.8 1/6 = 0.2A 1/A = 0.19 1/E = 0.1249

1/3 = 0.5 1/7 = 0.249 1/B = 0.1745D 1/F = 0.1

1/4 = 0.4 1/8 = 0.2 1/C = 0.15 1/10 = 0.1

1/5 = 0.3 1/9 = 0.1C7 1/D = 0.13B 1/11 = 0.0F

where an overline denotes a recurring pattern.
For any base, 0.1 (or "1/10") is always equivalent to one divided by the representation of that base value in its own
number system: Counting in base 3 is 0, 1, 2, 10 (three). Thus, whether dividing one by two for binary or dividing
one by sixteen for hexadecimal, both of these fractions are written as 0.1. Because the radix 16 is a perfect square
(4²), fractions expressed in hexadecimal have an odd period much more often than decimal ones, and there are no
cyclic numbers (other than trivial single digits). Recurring digits are exhibited when the denominator in lowest terms
has a prime factor not found in the radix; thus, when using hexadecimal notation, all fractions with denominators that
are not a power of two result in an infinite string of recurring digits (such as thirds and fifths). This makes
hexadecimal (and binary) less convenient than decimal for representing rational numbers since a larger proportion lie
outside its range of finite representation.
All rational numbers finitely representable in hexadecimal are also finitely representable in decimal, duodecimal, and
sexagesimal: that is, any hexadecimal number with a finite number of digits has a finite number of digits when
expressed in those other bases. Conversely, only a fraction of those finitely representable in the latter bases are
finitely representable in hexadecimal. For example, decimal 0.1 corresponds to the infinite recurring representation

http://en.wikipedia.org/w/index.php?title=Multiplication_table
http://en.wikipedia.org/w/index.php?title=File%3AHexadecimal_multiplication_table.svg
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=Microsoft_Windows
http://en.wikipedia.org/w/index.php?title=Calculator_%28Windows%29
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Numeric_keypad
http://en.wikipedia.org/w/index.php?title=Rational_number
http://en.wikipedia.org/w/index.php?title=Recurring_decimal
http://en.wikipedia.org/w/index.php?title=Overline%23In_mathematics
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Square_number
http://en.wikipedia.org/w/index.php?title=Cyclic_number
http://en.wikipedia.org/w/index.php?title=Prime_factor
http://en.wikipedia.org/w/index.php?title=Power_of_two
http://en.wikipedia.org/w/index.php?title=Decimal
http://en.wikipedia.org/w/index.php?title=Duodecimal
http://en.wikipedia.org/w/index.php?title=Sexagesimal

Hexadecimal 45

0.199999999999... in hexadecimal. However, hexadecimal is more efficient than bases 12 and 60 for representing
fractions with powers of two in the denominator (e.g., decimal one sixteenth is 0.1 in hexadecimal, 0.09 in
duodecimal, 0:3:45 in sexagesimal and 0.0625 in decimal).

In decimal
Prime factors of the base: 2, 5

In hexadecimal
Prime factors of the base: 2

Fraction Prime factors
of the denominator

Positional representation Positional representation Prime factors
of the denominator

Fraction

1/2 2 0.5 0.8 2 1/2

1/3 3 0.3333... = 0.3 0.5555... = 0.5 3 1/3

1/4 2 0.25 0.4 2 1/4

1/5 5 0.2 0.3 5 1/5

1/6 2, 3 0.16 0.2A 2, 3 1/6

1/7 7 0.142857 0.249 7 1/7

1/8 2 0.125 0.2 2 1/8

1/9 3 0.1 0.1C7 3 1/9

1/10 2, 5 0.1 0.19 2, 5 1/A

1/11 11 0.09 0.1745D B 1/B

1/12 2, 3 0.083 0.15 2, 3 1/C

1/13 13 0.076923 0.13B D 1/D

1/14 2, 7 0.0714285 0.1249 2, 7 1/E

1/15 3, 5 0.06 0.1 3, 5 1/F

1/16 2 0.0625 0.1 2 1/10

1/17 17 0.0588235294117647 0.0F 11 1/11

1/18 2, 3 0.05 0.0E38 2, 3 1/12

1/19 19 0.052631578947368421 0.0D79435E5 13 1/13

1/20 2, 5 0.05 0.0C 2, 5 1/14

1/21 3, 7 0.047619 0.0C3 3, 7 1/15

1/22 2, 11 0.045 0.0BA2E8 2, B 1/16

1/23 23 0.0434782608695652173913 0.0B21642C859 17 1/17

1/24 2, 3 0.0416 0.0A 2, 3 1/18

1/25 5 0.04 0.0A3D7 5 1/19

1/26 2, 13 0.0384615 0.09D8 2, B 1/1A

1/27 3 0.037 0.097B425ED 3 1/1B

1/28 2, 7 0.03571428 0.0924 2, 7 1/1C

1/29 29 0.0344827586206896551724137931 0.08D3DCB 1D 1/1D

1/30 2, 3, 5 0.03 0.08 2, 3, 5 1/1E

1/31 31 0.032258064516129 0.08421 1F 1/1F

1/32 2 0.03125 0.08 2 1/20

1/33 3, 11 0.03 0.07C1F 3, B 1/21

1/34 2, 17 0.02941176470588235 0.078 2, 11 1/22

Hexadecimal 46

1/35 5, 7 0.0285714 0.075 5, 7 1/23

1/36 2, 3 0.027 0.071C 2, 3 1/24

Algebraic irrational number In decimal In hexadecimal

√2 (the length of the diagonal of a unit square) 1.41421356237309... 1.6A09E667F3BCD...

√3 (the length of the diagonal of a unit cube) 1.73205080756887... 1.BB67AE8584CAA...

√5 (the length of the diagonal of a 1×2 rectangle) 2.2360679774997... 2.3C6EF372FE95...

φ (phi, the golden ratio = (1+√5)/2 1.6180339887498... 1.9E3779B97F4A...

Transcendental irrational number

π (pi, the ratio of circumference to diameter) 3.1415926535897932384626433
8327950288419716939937510...

3.243F6A8885A308D313198A2E0
3707344A4093822299F31D008...

e (the base of the natural logarithm) 2.7182818284590452... 2.B7E151628AED2A6B...

τ (the Thue–Morse constant) 0.412454033640... 0.6996 9669 9669 6996 ...

γ (the limiting difference between the harmonic series and the natural
logarithm)

0.5772156649015328606... 0.93C467E37DB0C7A4D1B...

Powers
Possibly the most widely used powers, powers of two, are easier to show using base 16. The first sixteen powers of
two are shown below.

2x value

20 1

21 2

22 4

23 8

24 10hex

25 20hex

26 40hex

27 80hex

28 100hex

29 200hex

2A () 400hex

2B () 800hex

2C () 1000hex

2D () 2000hex

2E () 4000hex

2F () 8000hex

http://en.wikipedia.org/w/index.php?title=Square_root_of_2
http://en.wikipedia.org/w/index.php?title=Diagonal
http://en.wikipedia.org/w/index.php?title=Square_%28geometry%29
http://en.wikipedia.org/w/index.php?title=Square_root_of_3
http://en.wikipedia.org/w/index.php?title=Cube
http://en.wikipedia.org/w/index.php?title=Square_root_of_5
http://en.wikipedia.org/w/index.php?title=Diagonal
http://en.wikipedia.org/w/index.php?title=Rectangle
http://en.wikipedia.org/w/index.php?title=Golden_ratio
http://en.wikipedia.org/w/index.php?title=Golden_ratio
http://en.wikipedia.org/w/index.php?title=Pi
http://en.wikipedia.org/w/index.php?title=Circumference
http://en.wikipedia.org/w/index.php?title=Diameter
http://en.wikipedia.org/w/index.php?title=E_%28mathematical_constant%29
http://en.wikipedia.org/w/index.php?title=Natural_logarithm
http://en.wikipedia.org/w/index.php?title=Thue%E2%80%93Morse_constant
http://en.wikipedia.org/w/index.php?title=Thue%E2%80%93Morse_constant
http://en.wikipedia.org/w/index.php?title=Euler-Mascheroni_constant
http://en.wikipedia.org/w/index.php?title=Harmonic_series_%28mathematics%29

Hexadecimal 47

210 () 10000hex

Since four squared is sixteen, powers of four have an even easier relation:

4x value

40 1

41 4

42 10hex

43 40hex

44 100hex

45 400hex

46 1000hex

47 4000hex

48 10000hex

This also makes tetration easier when using two and four since:
32 = 24 = 10hex,
42 = 216 = 10000hex and
52 = 265536 = (1 followed by 16384 zeros)hex.

Cultural

Etymology
The word hexadecimal is composed of hexa-, derived from the Greek έξ (hex) for "six", and -decimal, derived from
the Latin for "tenth". Webster's Third New International online derives "hexadecimal" as an alteration of the
all-Latin "sexadecimal" (which appears in the earlier Bendix documentation). The earliest date attested for
"hexadecimal" in Merriam-Webster Collegiate online is 1954, placing it safely in the category of international
scientific vocabulary (ISV). It is common in ISV to mix Greek and Latin combining forms freely. The word
"sexagesimal" (for base 60) retains the Latin prefix. Donald Knuth has pointed out that the etymologically correct
term is "senidenary", from the Latin term for "grouped by 16". (The terms "binary", "ternary" and "quaternary" are
from the same Latin construction, and the etymologically correct term for "decimal" arithmetic is "denary".)[10]

Alfred B. Taylor used "senidenary" in his mid 19th century work on alternative number bases, although he rejected
base 16 because of its "incommodious number of digits."[11][12] Schwartzman notes that the expected form from
usual Latin phrasing would be "sexadecimal", but computer hackers would be tempted to shorten that word to
"sex".[13] The etymologically proper Greek term would be hexadecadic (although in Modern Greek deca-hexadic
(δεκαεξαδικός) is more commonly used).

http://en.wikipedia.org/w/index.php?title=Tetration
http://en.wikipedia.org/w/index.php?title=Greek_language
http://en.wikipedia.org/w/index.php?title=Latin
http://en.wikipedia.org/w/index.php?title=International_scientific_vocabulary
http://en.wikipedia.org/w/index.php?title=International_scientific_vocabulary
http://en.wikipedia.org/w/index.php?title=Combining_form
http://en.wikipedia.org/w/index.php?title=Sexagesimal
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=Etymology
http://en.wikipedia.org/w/index.php?title=Greek_language
http://en.wikipedia.org/w/index.php?title=Modern_Greek

Hexadecimal 48

Use in Chinese culture

The traditional Chinese units of weight were base-16. For example, one jīn (斤) in the old system equals sixteen
taels. The suanpan (Chinese abacus) could be used to perform hexadecimal calculations.

Common patterns and humor
Hexadecimal is sometimes used in programmer jokes because some words can be formed using hexadecimal digits.
Some of these words are "dead", "beef", "babe", and with appropriate substitutions "c0ffee". Since these are quickly
recognizable by programmers, debugging setups sometimes initialize memory to them to help programmers see
when something has not been initialized.
An example is the magic number in Universal Mach-O files and java class file structure, which is "CAFEBABE".
Single-architecture 32-bit big-endian Mach-O files have the magic number "FEEDFACE" at their beginning.
"DEADBEEF" is sometimes put into uninitialized memory. Microsoft Windows XP clears its locked index.dat files
with the hex codes: "0BADF00D". The Visual C++ remote debugger uses "BADCAB1E" to denote a broken link to
the target system.
Two common bit patterns often employed to test hardware are 01010101 and 10101010 in binary (their
corresponding hex values are 55h and AAh, respectively). The reason for their use is to alternate between off ('0') to
on ('1') or vice versa when switching between these two patterns. These two values are often used together as
signatures in critical PC system sectors (e.g., the hex word, 0xAA55, which on little-endian systems is 55h followed
by AAh, must be at the end of a valid Master Boot Record).
The following table shows a joke referencing hexadecimal:

3x12 = 36

2x12 = 24

1x12 = 12

0x12 = 18

The first three lines are interpreted as decimal multiplication, but in the last, "0x" signals the Hexadecimal
interpretation of "12", which is 18.
Another joke based on the use of a word containing only letters from the first six in the alphabet (and thus those used
in hexadecimal) is...

If only dead people understand hexadecimal, how many people understand hexadecimal?
In this case, "dead" refers to a hexadecimal number DEAD (57005 base 10), as opposed to the state of being
deceased.
A Knuth reward check is one hexadecimal dollar, or $2.56.

Primary numeral system
Similar to dozenal advocacy, there have been occasional attempts to promote hexadecimal as the preferred numeral
system. These attempts usually propose pronunciation and/or symbology.[14] Sometimes the proposal unifies
standard measures so that they are multiples of 16.[15][16][17]

An example of unifying standard measures is Hexadecimal time, which subdivides a day by 16 so that there are 16
"hexhours" in a day.[17]

http://en.wikipedia.org/w/index.php?title=Chinese_units_of_measurement
http://en.wikipedia.org/w/index.php?title=Tael
http://en.wikipedia.org/w/index.php?title=Suanpan
http://en.wikipedia.org/w/index.php?title=Abacus
http://en.wikipedia.org/w/index.php?title=Magic_number_%28programming%29
http://en.wikipedia.org/w/index.php?title=Universal_binary
http://en.wikipedia.org/w/index.php?title=Mach-O
http://en.wikipedia.org/w/index.php?title=Java_Platform
http://en.wikipedia.org/w/index.php?title=Class_file
http://en.wikipedia.org/w/index.php?title=0xDEADBEEF
http://en.wikipedia.org/w/index.php?title=Little-endian
http://en.wikipedia.org/w/index.php?title=Master_boot_record
http://en.wikipedia.org/w/index.php?title=Multiplication_sign%23Similar_notations
http://en.wikipedia.org/w/index.php?title=Knuth_reward_check
http://en.wikipedia.org/w/index.php?title=Dozenal%23Advocacy_and_%22dozenalism%22
http://en.wikipedia.org/w/index.php?title=Hexadecimal_time

Hexadecimal 49

Key to number base notation
Simple key for notations used in article:

Full Text Notation Abbreviation Number Base

binary bin 2

octal oct 8

decimal dec 10

hexadecimal hex 16

References
[1] "Hexadecimal web colors explained" (http:/ / www. web-colors-explained. com/ hex. php). .
[2] Some of C's syntactic descendants are C++, C#, Java, JavaScript, Python and Windows PowerShell
[3] The string "\x1B[0m\x1B[25;1H" specifies the character sequence Esc [0 m Esc [2 5 ; 1 H Nul. These are the escape

sequences used on an ANSI terminal that reset the character set and color, and then move the cursor to line 25.
[4] The VHDL MINI-REFERENCE: VHDL IDENTIFIERS, NUMBERS, STRINGS, AND EXPRESSIONS (http:/ / www. eng. auburn. edu/

department/ ee/ mgc/ vhdl. html#numbers)
[5] MSX is Coming — Part 2: Inside MSX (http:/ / www. atarimagazines. com/ compute/ issue56/ 107_1_MSX_IS_COMING. php) Compute!,

issue 56, January 1985, p. 52
[6] BBC BASIC programs are not fully portable to Microsoft BASIC (without modification) since the latter takes & to prefix octal values.

(Microsoft BASIC primarily uses &O to prefix octal, and it uses &H to prefix hexadecimal, but the ampersand alone yields a default
interpretation as an octal prefix.

[7] Donald E. Knuth. The TeXbook (Computers and Typesetting, Volume A). Reading, Massachusetts: Addison-Wesley, 1984. ISBN
0-201-13448-9. The source code of the book in TeX (http:/ / www. ctan. org/ tex-archive/ systems/ knuth/ tex/ texbook. tex) (and a required
set of macros CTAN.org (ftp:/ / tug. ctan. org/ pub/ tex-archive/ systems/ knuth/ lib/ manmac. tex)) is available online on CTAN.

[8] This somewhat odd sequence was from the next six sequential numeric keyboard codes in the LGP-30's 6-bit character code. LGP-30
PROGRAMMING MANUAL (http:/ / ed-thelen. org/ comp-hist/ lgp-30-man. html#R4. 13)

[9] Letters to the editor: On binary notation, Bruce Alan Martin, Associated Universities Inc., Communications of the ACM, Volume 11, Issue
10 (October 1968) Page: 658 doi:10.1145/364096.364107

[10] Knuth, Donald. (1969). Donald Knuth, in The Art of Computer Programming, Volume 2. ISBN 0-201-03802-1. (Chapter 17.)
[11] A.B. Taylor, Report on Weights and Measures (http:/ / books. google. com/ books?id=X7wLAAAAYAAJ& pg=PP5), Pharmaceutical

Association, 8th Annual Session, Boston, Sept. 15, 1859. See pages and 33 and 41.
[12] Alfred B. Taylor, Octonary numeration and its application to a system of weights and measures, Proc Amer. Phil. Soc. Vol XXIV (http:/ /

books. google. com/ books?id=KsAUAAAAYAAJ& pg=PA296), Philadelphia, 1887; pages 296-366. See pages 317 and 322.
[13] Schwartzman, S. (1994). The Words of Mathematics: an etymological dictionary of mathematical terms used in English. ISBN

0-88385-511-9.
[14] "Base 4^2 Hexadecimal Symbol Proposal" (http:/ / www. hauptmech. com/ base42). .
[15] "Intuitor Hex Headquarters" (http:/ / www. intuitor. com/ hex/). .
[16] "A proposal for addition of the six Hexadecimal digits (A-F) to Unicode" (http:/ / std. dkuug. dk/ jtc1/ sc2/ wg2/ docs/ n2677). .
[17] Nystrom, John William (1862). Project of a New System of Arithmetic, Weight, Measure and Coins: Proposed to be called the Tonal System,

with Sixteen to the Base (http:/ / books. google. com/ books?id=aNYGAAAAYAAJ). Philadelphia. .

http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Decimal
http://www.web-colors-explained.com/hex.php
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Windows_PowerShell
http://en.wikipedia.org/w/index.php?title=ANSI_escape_code
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html#numbers
http://www.eng.auburn.edu/department/ee/mgc/vhdl.html#numbers
http://www.atarimagazines.com/compute/issue56/107_1_MSX_IS_COMING.php
http://en.wikipedia.org/w/index.php?title=Compute%21
http://en.wikipedia.org/w/index.php?title=Microsoft_BASIC
http://en.wikipedia.org/w/index.php?title=Octal
http://en.wikipedia.org/w/index.php?title=Computers_and_Typesetting
http://www.ctan.org/tex-archive/systems/knuth/tex/texbook.tex
ftp://tug.ctan.org/pub/tex-archive/systems/knuth/lib/manmac.tex
http://en.wikipedia.org/w/index.php?title=CTAN
http://ed-thelen.org/comp-hist/lgp-30-man.html#R4.13
http://books.google.com/books?id=X7wLAAAAYAAJ&pg=PP5
http://books.google.com/books?id=KsAUAAAAYAAJ&pg=PA296
http://books.google.com/books?id=KsAUAAAAYAAJ&pg=PA296
http://www.hauptmech.com/base42
http://www.intuitor.com/hex/
http://std.dkuug.dk/jtc1/sc2/wg2/docs/n2677
http://books.google.com/books?id=aNYGAAAAYAAJ

Octal 50

Octal
The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals
can be made from binary numerals by grouping consecutive binary digits into groups of three (starting from the
right). For example, the binary representation for decimal 74 is 1001010, which can be grouped into (00)1 001 010 –
so the octal representation is 112.
In the decimal system each decimal place is a power of ten. For example:

In the octal system each place is a power of eight. For example:

By performing the calculation above in the familiar decimal system we see why 112 in octal is equal to 64+8+2 = 74
in decimal.

Usage

By Native Americans
The Yuki language in California and the Pamean languages[1] in Mexico have octal systems because the speakers
count using the spaces between their fingers rather than the fingers themselves.[2]

By Europeans
• In 1716 King Charles XII of Sweden asked Emanuel Swedenborg to elaborate a number system based on 64

instead of 10. Swedenborg however argued that for people with less intelligence than the king such a big base
would be too difficult and instead proposed 8 as the base. In 1718 Swedenborg wrote (but did not publish) a
manuscript: "En ny räknekonst som omväxlas vid talet 8 istället för det vanliga vid talet 10" ("A new arithmetic
(or art of counting) which changes at the Number 8 instead of the usual at the Number 10"). The numbers 1-7 are
there denoted by the consonants l, s, n, m, t, f, u (v) and zero by the vowel o. Thus 8 = "lo", 16 = "so", 24 = "no",
64 = "loo", 512 = "looo" etc. Numbers with consecutive consonants are pronounced with vowel sounds between
in accordance with a special rule.[3]

• Writing under the pseudonym "Hirossa Ap-Iccim" in The Gentleman's Magazine, (London) July 1745, Hugh
Jones proposed an octal system for British coins, weights and measures. "Whereas reason and convenience
indicate to us an uniform standard for all quantities; which I shall call the Georigan standard; and that is only to
divide every integer in each species into eight equal parts, and every part again into 8 real or imaginary particles,
as far as is necessary. For tho' all nations count universally by tens (originally occasioned by the number of digits
on both hands) yet 8 is a far more complete and commodious number; since it is divisible into halves, quarters,
and half quarters (or units) without a fraction, of which subdivision ten is uncapable...." In a later treatise on
Octave computation (1753) Jones concluded: "Arithmetic by Octaves seems most agreeable to the Nature of
Things, and therefore may be called Natural Arithmetic in Opposition to that now in Use, by Decades; which may
be esteemed Artificial Arithmetic."[4]

• In 1801, James Anderson criticized the French for basing the Metric system on decimal arithmetic. He suggested
base 8 for which he coined the term octal. His work was intended as recreational mathematics, but he suggested a
purely octal system of weights and measures and observed that the existing system of English units was already,
to a remarkable extent, an octal system.[5]

• In the mid 19th century, Alfred B. Taylor concluded that "Our octonary [base 8] radix is, therefore, beyond all
comparison the "best possible one" for an arithmetical system." The proposal included a graphical notation for the

http://en.wikipedia.org/w/index.php?title=Numeral_system
http://en.wikipedia.org/w/index.php?title=Radix
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Yuki_language
http://en.wikipedia.org/w/index.php?title=California
http://en.wikipedia.org/w/index.php?title=Mexico
http://en.wikipedia.org/w/index.php?title=Charles_XII_of_Sweden
http://en.wikipedia.org/w/index.php?title=Emanuel_Swedenborg
http://en.wikipedia.org/w/index.php?title=The_Gentleman%27s_Magazine
http://en.wikipedia.org/w/index.php?title=Hugh_Jones_%28reverend%29
http://en.wikipedia.org/w/index.php?title=Hugh_Jones_%28reverend%29
http://en.wikipedia.org/w/index.php?title=Hugh_Jones_%28reverend%29%23Publications
http://en.wikipedia.org/w/index.php?title=English_units

Octal 51

digits and new names for the numbers, suggesting that we should count "un, du, the, fo, pa, se, ki, unty, unty-un,
unty-du" and so on, with successive multiples of eight named "unty, duty, thety, foty, paty, sety, kity and under."
So, for example, the number 65 would be spoken in octonary as under-un.[6][7] Taylor also republished some of
Swedenborg's work on octonary as an appendix to the above-cited publications.

In fiction
In the 2009 film Avatar, the language of the extraterrestrial Na'vi race employs an octal numeral system, probably
due to the fact that they have four fingers on each hand.[8]

In the TV series Stargate SG-1, the Ancients, a race of beings responsible for the invention of the Stargates, used an
octal system of mathematics.

In computers
Octal became widely used in computing when systems such as the PDP-8, ICL 1900 and IBM mainframes employed
12-bit, 24-bit or 36-bit words. Octal was an ideal abbreviation of binary for these machines because their word size is
divisible by three (each octal digit represents three binary digits). So four, eight or twelve digits could concisely
display an entire machine word. It also cut costs by allowing Nixie tubes, seven-segment displays, and calculators to
be used for the operator consoles, where binary displays were too complex to use, decimal displays needed complex
hardware to convert radices, and hexadecimal displays needed to display more numerals.
All modern computing platforms, however, use 16-, 32-, or 64-bit words, further divided into eight-bit bytes. On
such systems three octal digits per byte would be required, with the most significant octal digit representing two
binary digits (plus one bit of the next significant byte, if any). Octal representation of a 16-bit word requires 6 digits,
but the most significant octal digit represents (quite inelegantly) only one bit (0 or 1). This representation offers no
way to easily read the most significant byte, because it's smeared over four octal digits. Therefore, hexadecimal is
more commonly used in programming languages today, since two hexadecimal digits exactly specify one byte. Some
platforms with a power-of-two word size still have instruction subwords that are more easily understood if displayed
in octal; this includes the PDP-11 and Motorola 68000 family. The modern-day ubiquitous x86 architecture belongs
to this category as well, but octal is rarely used on this platform, although certain properties of the binary encoding
of opcodes become more readily apparent when displayed in octal, e.g. the ModRM byte, which is divided into fields
of 2, 3, and 3 bits, so octal can be useful in describing these encodings.
Octal is sometimes used in computing instead of hexadecimal, perhaps most often in modern times in conjunction
with file permissions under Unix systems (see chmod). It has the advantage of not requiring any extra symbols as
digits (the hexadecimal system is base-16 and therefore needs six additional symbols beyond 0–9). It is also used for
digital displays.
In programming languages, octal literals are typically identified with a variety of prefixes, including the digit 0, the
letters o or q, or the digit–letter combination 0o. For example, the literal 73 (base 8) might be represented as 073,
o73, q73, or 0o73 in various languages. Newer languages have been abandoning the prefix 0, as decimal numbers are
often represented with leading zeroes. The prefix q was introduced to avoid the prefix o being mistaken for a zero,
while the prefix 0o was introduced to avoid starting a numerical literal with an alphabetic character (like o or q),
since these might cause the literal to be confused with a variable name. The prefix 0o also follows the model set by
the prefix 0x used for hexadecimal literals in the C language.[9][10][11]

Octal numbers that are used in some programming languages (C, Perl, PostScript…) for textual/graphical
representations of byte strings when some byte values (unrepresented in a code page, non-graphical, having special
meaning in current context or otherwise undesired) have to be to escaped as \nnn. Octal representation of
non-ASCII bytes may be particularly handy with UTF-8, where any start byte has octal value \3nn and any
continuation byte has octal value \2nn.

http://en.wikipedia.org/w/index.php?title=Avatar_%282009_film%29
http://en.wikipedia.org/w/index.php?title=Na%27vi
http://en.wikipedia.org/w/index.php?title=Stargate_SG-1
http://en.wikipedia.org/w/index.php?title=PDP-8
http://en.wikipedia.org/w/index.php?title=ICT_1900_series
http://en.wikipedia.org/w/index.php?title=IBM_mainframe
http://en.wikipedia.org/w/index.php?title=12-bit
http://en.wikipedia.org/w/index.php?title=24-bit
http://en.wikipedia.org/w/index.php?title=36-bit
http://en.wikipedia.org/w/index.php?title=Nixie_tube
http://en.wikipedia.org/w/index.php?title=Seven-segment_display
http://en.wikipedia.org/w/index.php?title=Calculator
http://en.wikipedia.org/w/index.php?title=Word_%28computer_architecture%29
http://en.wikipedia.org/w/index.php?title=Octet_%28computing%29
http://en.wikipedia.org/w/index.php?title=PDP-11
http://en.wikipedia.org/w/index.php?title=Motorola_68000_family
http://en.wikipedia.org/w/index.php?title=X86_architecture
http://en.wikipedia.org/w/index.php?title=File_permissions
http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=Chmod
http://en.wikipedia.org/w/index.php?title=Literal_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=PostScript
http://en.wikipedia.org/w/index.php?title=Escape_character
http://en.wikipedia.org/w/index.php?title=UTF-8

Octal 52

Conversion between bases

Decimal to octal conversion

Method of successive division by 8

To convert integer decimals to octal, divide the original number by the largest possible power of 8 and successively
divide the remainders by successively smaller powers of 8 until the power is 1. The octal representation is formed by
the quotients, written in the order generated by the algorithm.
For example, to convert 12510 to octal:

125 / 82 = 1
125 − 82 × 1 = 61
61 / 81 = 7
61 − 81 × 7 = 5
5 / 80 = 5

Therefore, 12510 = 1758.
Another example:

900 / 83 = 1
900 − 83 × 1 = 388
388 / 82 = 6
388 − 82 × 6 = 4
4 / 81 = 0
4 − 81 × 0 = 4
4 / 80 = 4

Therefore, 90010 = 16048.

Method of successive multiplication by 8

To convert a decimal fraction to octal, multiply by 8; the integer part of the result is the first digit of the octal
fraction. Repeat the process with the fractional part of the result, until it is null or within acceptable error bounds.
Example: Convert 0.1640625 to octal:

0.1640625 × 8 = 1.3125 = 1 + 0.3125
0.3125 × 8 = 2.5 = 2 + 0.5
0.5 × 8 = 4.0 = 4 + 0

Therefore, 0.164062510 = 0.1248.
These two methods can be combined to handle decimal numbers with both integer and fractional parts, using the first
on the integer part and the second on the fractional part.

Octal 53

Octal to decimal conversion
To convert a number k to decimal, use the formula that defines its base-8 representation:

In this formula, ai is an individual octal digit being converted, where i is the position of the digit (counting from 0
for the right-most digit).
Example: Convert 7648 to decimal:

7648 = 7 × 82 + 6 × 81 + 4 × 80 = 448 + 48 + 4 = 50010
For double-digit octal numbers this method amounts to multiplying the lead digit by 8 and adding the second digit to
get the total.
Example: 658 = 6 × 8 + 5 = 5310

Octal to binary conversion
To convert octal to binary, replace each octal digit by its binary representation. Example: Convert 518 to binary:

58 = 1012
18 = 0012

Therefore, 518 = 101 0012.

Binary to octal conversion
The process is the reverse of the previous algorithm. The binary digits are grouped by threes, starting from the least
significant bit and proceeding to the left and to the right. Add leading 0s (or trailing zeros to the right of decimal
point) to fill out the last group of three if necessary. Then replace each trio with the equivalent octal digit.
For instance, convert binary 1010111100 to octal:

001 010 111 100

1 2 7 4

Therefore, 10101111002 = 12748.
Convert binary 11100.01001 to octal:

011 100 . 010 010

3 4 . 2 2

Therefore, 11100.010012 = 34.228.

Octal 54

Octal to hexadecimal conversion
The conversion is made in two steps using binary as an intermediate base. Octal is converted to binary and then
binary to hexadecimal, grouping digits by fours, which correspond each to a hexadecimal digit.
For instance, convert octal 1057 to hexadecimal:

To binary:

1 0 5 7

001 000 101 111

then to hexadecimal:

0010 0010 1111

2 2 F

Therefore, 10578 = 22F16.

Hexadecimal to octal conversion
Hexadecimal to octal conversion proceeds by first converting the hexadecimal digits to 4-bit binary values, then
regrouping the binary bits into 3-bit octal digits.
For example, to convert 3FA516:

To binary:

3 F A 5

0011 1111 1010 0101

then to octal:

0 011 111 110 100 101

0 3 7 6 4 5

Therefore, 3FA516 = 376458.

References
[1] Avelino, Heriberto (2006). "The typology of Pame number systems and the limits of Mesoamerica as a linguistic area" (http:/ / linguistics.

berkeley. edu/ ~avelino/ Avelino_2006. pdf). Linguistic Typology 10 (1): 41–60. doi:10.1515/LINGTY.2006.002.
[2] Marcia Ascher. "Ethnomathematics: A Multicultural View of Mathematical Ideas" (http:/ / links. jstor. org/

sici?sici=0746-8342(199209)23:4<353:EAMVOM>2. 0. CO;2-#& size=LARGE). The College Mathematics Journal. . Retrieved 2007-04-13.
[3] Donald Knuth, The Art of Computer Programming
[4] See H.R. Phalen, "Hugh Jones and Octave Computation," The American Mathematical Monthly 56 (August–September 1949): 461-65.
[5] James Anderson, On Octal Arithmetic [title appears only in page headers], Recreations in Agriculture, Natural-History, Arts, and

Miscellaneous Literature (http:/ / books. google. com/ books?id=olhHAAAAYAAJ& pg=PA437), Vol. IV, No. 6 (Feb. 1801), T. Bensley,
London; pages 437-448.

[6] A.B. Taylor, Report on Weights and Measures (http:/ / books. google. com/ books?id=X7wLAAAAYAAJ& pg=PP5), Pharmaceutical
Association, 8th Annual Session, Boston, Sept. 15, 1859. See pages and 48 and 53.

[7] Alfred B. Taylor, Octonary numeration and its application to a system of weights and measures, Proc. Amer. Phil. Soc. Vol XXIV (http:/ /
books. google. com/ books?id=KsAUAAAAYAAJ& pg=PA296), Philadelphia, 1887; pages 296-366. See pages 327 and 330.

[8] Counting in Na'vi (http:/ / www. languagesandnumbers. com/ how-to-count-in-navi/ en/ navi/)
[9] ECMAScript 5th Edition: http:/ / www. ecma-international. org/ publications/ files/ ECMA-ST/ Ecma-262. pdf
[10] Perl 6: http:/ / svn. pugscode. org/ pugs/ docs/ Perl6/ Spec/ S02-bits. pod
[11] Python 3: http:/ / docs. python. org/ 3. 1/ reference/ lexical_analysis. html#literals

http://linguistics.berkeley.edu/~avelino/Avelino_2006.pdf
http://linguistics.berkeley.edu/~avelino/Avelino_2006.pdf
http://links.jstor.org/sici?sici=0746-8342%28199209%2923%3A4%3C353%3AEAMVOM%3E2.0.CO%3B2-%23&size=LARGE
http://links.jstor.org/sici?sici=0746-8342%28199209%2923%3A4%3C353%3AEAMVOM%3E2.0.CO%3B2-%23&size=LARGE
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=The_Art_of_Computer_Programming
http://books.google.com/books?id=olhHAAAAYAAJ&pg=PA437
http://books.google.com/books?id=X7wLAAAAYAAJ&pg=PP5
http://books.google.com/books?id=KsAUAAAAYAAJ&pg=PA296
http://books.google.com/books?id=KsAUAAAAYAAJ&pg=PA296
http://www.languagesandnumbers.com/how-to-count-in-navi/en/navi/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://svn.pugscode.org/pugs/docs/Perl6/Spec/S02-bits.pod
http://docs.python.org/3.1/reference/lexical_analysis.html#literals

Octal 55

External links
• Octomatics (http:/ / www. octomatics. org) is a numeral system enabling simple visual calculation in octal.

Binary number
In mathematics and computer science, the binary numeral system, or base-2 numeral system, represents numeric
values using two symbols: 0 and 1. More specifically, the usual base-2 system is a positional notation with a radix of
2. Numbers represented in this system are commonly called binary numbers. Because of its straightforward
implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all
modern computers and computer-based devices such as mobile phones.

History
The Indian scholar Pingala (around 5th–2nd centuries BC) developed mathematical concepts for describing prosody,
and in doing so presented the first known description of a binary numeral system.[1][2] He used binary numbers in the
form of short and long syllables (the latter equal in length to two short syllables), making it similar to Morse
code.[3][4]

Pingala's Hindu classic titled Chandaḥśāstra (8.23) describes the formation of a matrix in order to give a unique
value to each meter. An example of such a matrix is as follows (note that these binary representations are
"backwards" compared to modern, Western positional notation):[5][6]

0 0 0 0 numerical value 110
1 0 0 0 numerical value 210
0 1 0 0 numerical value 310
1 1 0 0 numerical value 410

Daoist Bagua

A set of eight trigrams (Bagua) and a set of 64 hexagrams ("sixty-four"
gua), analogous to the three-bit and six-bit binary numerals, were in usage
at least as early as the Zhou Dynasty of ancient China through the classic
text Yijing.

http://www.octomatics.org
http://en.wikipedia.org/w/index.php?title=Numeral_system
http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=0_%28number%29
http://en.wikipedia.org/w/index.php?title=1_%28number%29
http://en.wikipedia.org/w/index.php?title=Base_%28exponentiation%29
http://en.wikipedia.org/w/index.php?title=2_%28number%29
http://en.wikipedia.org/w/index.php?title=Positional_notation
http://en.wikipedia.org/w/index.php?title=Radix
http://en.wikipedia.org/w/index.php?title=Digital_electronics
http://en.wikipedia.org/w/index.php?title=Logic_gate
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Mobile_phones
http://en.wikipedia.org/w/index.php?title=Pingala
http://en.wikipedia.org/w/index.php?title=Prosody_%28poetry%29
http://en.wikipedia.org/w/index.php?title=Morse_code
http://en.wikipedia.org/w/index.php?title=Morse_code
http://en.wikipedia.org/w/index.php?title=Chandah-shastra
http://en.wikipedia.org/w/index.php?title=Positional_notation
http://en.wikipedia.org/w/index.php?title=File%3ABagua-name-earlier.svg
http://en.wikipedia.org/w/index.php?title=Ba_gua
http://en.wikipedia.org/w/index.php?title=Hexagram_%28I_Ching%29
http://en.wikipedia.org/w/index.php?title=Hexagram_%28I_Ching%29
http://en.wikipedia.org/w/index.php?title=Zhou_Dynasty
http://en.wikipedia.org/w/index.php?title=I_Ching

Binary number 56

Tibetan Buddhist "Mystic Tablet"

In the 11th century, scholar and philosopher Shao Yong developed a
method for arranging the hexagrams which corresponds, albeit
unintentionally, to the sequence 0 to 63, as represented in binary, with yin
as 0, yang as 1 and the least significant bit on top. The ordering is also the
lexicographical order on sextuples of elements chosen from a two-element
set.[7]

Similar sets of binary combinations have also been used in traditional
African divination systems such as Ifá as well as in medieval Western
geomancy. The base-2 system utilized in geomancy had long been widely
applied in sub-Saharan Africa.

Gottfried Leibniz

In 1605 Francis Bacon discussed a system whereby letters of the alphabet
could be reduced to sequences of binary digits, which could then be
encoded as scarcely visible variations in the font in any random text.[8]

Importantly for the general theory of binary encoding, he added that this
method could be used with any objects at all: "provided those objects be
capable of a twofold difference only; as by Bells, by Trumpets, by Lights
and Torches, by the report of Muskets, and any instruments of like
nature".[8] (See Bacon's cipher.)

The modern binary number system was studied by Gottfried Leibniz in
1679. See his article:Explication de l'Arithmétique Binaire[9](1703).
Leibniz's system uses 0 and 1, like the modern binary numeral system. As a
Sinophile, Leibniz was aware of the Yijing (or I-Ching) and noted with
fascination how its hexagrams correspond to the binary numbers from 0 to
111111, and concluded that this mapping was evidence of major Chinese
accomplishments in the sort of philosophical mathematics he admired.[10]

In 1854, British mathematician George Boole published a landmark paper detailing an algebraic system of logic that
would become known as Boolean algebra. His logical calculus was to become instrumental in the design of digital
electronic circuitry.[11]

In 1937, Claude Shannon produced his master's thesis at MIT that implemented Boolean algebra and binary
arithmetic using electronic relays and switches for the first time in history. Entitled A Symbolic Analysis of Relay and
Switching Circuits, Shannon's thesis essentially founded practical digital circuit design.[12]

In November 1937, George Stibitz, then working at Bell Labs, completed a relay-based computer he dubbed the
"Model K" (for "Kitchen", where he had assembled it), which calculated using binary addition.[13] Bell Labs thus
authorized a full research programme in late 1938 with Stibitz at the helm. Their Complex Number Computer,
completed 8 January 1940, was able to calculate complex numbers. In a demonstration to the American
Mathematical Society conference at Dartmouth College on 11 September 1940, Stibitz was able to send the Complex
Number Calculator remote commands over telephone lines by a teletype. It was the first computing machine ever
used remotely over a phone line. Some participants of the conference who witnessed the demonstration were John
Von Neumann, John Mauchly and Norbert Wiener, who wrote about it in his memoirs.[14][15][16]

http://en.wikipedia.org/w/index.php?title=File%3ACarus-p48-Mystic-table.jpg
http://en.wikipedia.org/w/index.php?title=Shao_Yong
http://en.wikipedia.org/w/index.php?title=Least_significant_bit
http://en.wikipedia.org/w/index.php?title=Lexicographical_order
http://en.wikipedia.org/w/index.php?title=Sextuple
http://en.wikipedia.org/w/index.php?title=If%C3%A1
http://en.wikipedia.org/w/index.php?title=Middle_Ages
http://en.wikipedia.org/w/index.php?title=Geomancy
http://en.wikipedia.org/w/index.php?title=File%3AGottfried_Wilhelm_von_Leibniz.jpg
http://en.wikipedia.org/w/index.php?title=Francis_Bacon
http://en.wikipedia.org/w/index.php?title=Bacon%27s_cipher
http://en.wikipedia.org/w/index.php?title=Gottfried_Leibniz
http://en.wikipedia.org/w/index.php?title=Sinophile
http://en.wikipedia.org/w/index.php?title=I_Ching
http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=George_Boole
http://en.wikipedia.org/w/index.php?title=Algebra
http://en.wikipedia.org/w/index.php?title=Logic
http://en.wikipedia.org/w/index.php?title=Boolean_algebra_%28logic%29
http://en.wikipedia.org/w/index.php?title=Claude_Shannon
http://en.wikipedia.org/w/index.php?title=MIT
http://en.wikipedia.org/w/index.php?title=A_Symbolic_Analysis_of_Relay_and_Switching_Circuits
http://en.wikipedia.org/w/index.php?title=A_Symbolic_Analysis_of_Relay_and_Switching_Circuits
http://en.wikipedia.org/w/index.php?title=Digital_circuit
http://en.wikipedia.org/w/index.php?title=George_Stibitz
http://en.wikipedia.org/w/index.php?title=Bell_Labs
http://en.wikipedia.org/w/index.php?title=Complex_numbers
http://en.wikipedia.org/w/index.php?title=American_Mathematical_Society
http://en.wikipedia.org/w/index.php?title=American_Mathematical_Society
http://en.wikipedia.org/w/index.php?title=Dartmouth_College
http://en.wikipedia.org/w/index.php?title=Teletype
http://en.wikipedia.org/w/index.php?title=John_Von_Neumann
http://en.wikipedia.org/w/index.php?title=John_Von_Neumann
http://en.wikipedia.org/w/index.php?title=John_Mauchly
http://en.wikipedia.org/w/index.php?title=Norbert_Wiener

Binary number 57

Representation
Any number can be represented by any sequence of bits (binary digits), which in turn may be represented by any
mechanism capable of being in two mutually exclusive states. The following sequence of symbols could all be
interpreted as the binary numeric value of 667:

1 0 1 0 0 1 1 0 1 1

| − | − − | | − | |
x o x o o x x o x x

y n y n n y y n y y

A binary clock might use LEDs to express binary values. In this
clock, each column of LEDs shows a binary-coded decimal numeral

of the traditional sexagesimal time.

The numeric value represented in each case is
dependent upon the value assigned to each symbol. In a
computer, the numeric values may be represented by
two different voltages; on a magnetic disk, magnetic
polarities may be used. A "positive", "yes", or "on"
state is not necessarily equivalent to the numerical
value of one; it depends on the architecture in use.

In keeping with customary representation of numerals
using Arabic numerals, binary numbers are commonly
written using the symbols 0 and 1. When written,
binary numerals are often subscripted, prefixed or
suffixed in order to indicate their base, or radix. The
following notations are equivalent:

100101 binary (explicit statement of format)
100101b (a suffix indicating binary format)
100101B (a suffix indicating binary format)
bin 100101 (a prefix indicating binary format)
1001012 (a subscript indicating base-2 (binary)
notation)

%100101 (a prefix indicating binary format)
0b100101 (a prefix indicating binary format, common in programming languages)
6b100101 (a prefix indicating number of bits in binary format, common in programming languages)

When spoken, binary numerals are usually read digit-by-digit, in order to distinguish them from decimal numerals.
For example, the binary numeral 100 is pronounced one zero zero, rather than one hundred, to make its binary nature
explicit, and for purposes of correctness. Since the binary numeral 100 represents the value four, it would be
confusing to refer to the numeral as one hundred (a word that represents a completely different value, or amount).
Alternatively, the binary numeral 100 can be read out as "four" (the correct value), but this does not make its binary
nature explicit.

http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=667_%28number%29
http://en.wikipedia.org/w/index.php?title=Binary_clock
http://en.wikipedia.org/w/index.php?title=Light-emitting_diode
http://en.wikipedia.org/w/index.php?title=Sexagesimal
http://en.wikipedia.org/w/index.php?title=File%3ABinary_clock.svg
http://en.wikipedia.org/w/index.php?title=Voltage
http://en.wikipedia.org/w/index.php?title=Magnetic_field
http://en.wikipedia.org/w/index.php?title=Disk_storage
http://en.wikipedia.org/w/index.php?title=Polarity_%28physics%29
http://en.wikipedia.org/w/index.php?title=Yes_and_no
http://en.wikipedia.org/w/index.php?title=Arabic_numerals

Binary number 58

Counting in binary

Decimal pattern (Hex Value) Binary numbers

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 – (A) 1010

11 – (B) 1011

12 – (C) 1100

13 – (D) 1101

14 – (E) 1110

15 – (F) 1111

16 – (10) 10000

Counting in binary is similar to counting in any other number system. Beginning with a single digit, counting
proceeds through each symbol, in increasing order. Decimal counting uses the symbols 0 through 9, while binary
only uses the symbols 0 and 1.
When the symbols for the first digit are exhausted, the next-higher digit (to the left) is incremented, and counting
starts over at 0. In decimal, counting proceeds like so:

000, 001, 002, ... 007, 008, 009, (rightmost digit starts over, and next digit is incremented)
010, 011, 012, ...
...
090, 091, 092, ... 097, 098, 099, (rightmost two digits start over, and next digit is incremented)
100, 101, 102, ...

After a digit reaches 9, an increment resets it to 0 but also causes an increment of the next digit to the left. In binary,
counting is the same except that only the two symbols 0 and 1 are used. Thus after a digit reaches 1 in binary, an
increment resets it to 0 but also causes an increment of the next digit to the left:

0000,
0001, (rightmost digit starts over, and next digit is incremented)
0010, 0011, (rightmost two digits start over, and next digit is incremented)
0100, 0101, 0110, 0111, (rightmost three digits start over, and the next digit is incremented)
1000, 1001, ...

Since binary is a base-2 system, each digit represents an increasing power of 2, with the rightmost digit representing
20, the next representing 21, then 22, and so on. To determine the decimal representation of a binary number simply

http://en.wikipedia.org/w/index.php?title=Decimal

Binary number 59

take the sum of the products of the binary digits and the powers of 2 which they represent. For example, the binary
number:
100101
is converted to decimal form by:
[(1) × 25] + [(0) × 24] + [(0) × 23] + [(1) × 22] + [(0) × 21] + [(1) × 20] =
[1 × 32] + [0 × 16] + [0 × 8] + [1 × 4] + [0 × 2] + [1 × 1] = 3710
To create higher numbers, additional digits are simply added to the left side of the binary representation.

Fractions
Fractions in binary only terminate if the denominator has 2 as the only prime factor. As a result, 1/10 does not have a
finite binary representation, and this causes 10 × 0.1 not to be precisely equal to 1 in floating point arithmetic. As an
example, to interpret the binary expression for 1/3 = .010101..., this means: 1/3 = 0 × 2−1 + 1 × 2−2 + 0 × 2−3 + 1 ×
2−4 + ... = 0.3125 + ... An exact value cannot be found with a sum of a finite number of inverse powers of two, and
zeros and ones alternate forever.

Fraction Decimal Binary Fractional approximation

1/1 1 or 0.999... 1 or 0.111... 1/2 + 1/4 + 1/8...

1/2 0.5 or 0.4999... 0.1 or 0.0111... 1/4 + 1/8 + 1/16 . . .

1/3 0.333... 0.010101... 1/4 + 1/16 + 1/64 . . .

1/4 0.25 or 0.24999... 0.01 or 0.00111... 1/8 + 1/16 + 1/32 . . .

1/5 0.2 or 0.1999... 0.00110011... 1/8 + 1/16 + 1/128 . . .

1/6 0.1666... 0.0010101... 1/8 + 1/32 + 1/128 . . .

1/7 0.142857142857... 0.001001... 1/8 + 1/64 + 1/512 . . .

1/8 0.125 or 0.124999... 0.001 or 0.000111... 1/16 + 1/32 + 1/64 . . .

1/9 0.111... 0.000111000111... 1/16 + 1/32 + 1/64 . . .

1/10 0.1 or 0.0999... 0.000110011... 1/16 + 1/32 + 1/256 . . .

1/11 0.090909... 0.00010111010001011101... 1/16 + 1/64 + 1/128 . . .

1/12 0.08333... 0.00010101... 1/16 + 1/64 + 1/256 . . .

1/13 0.076923076923... 0.000100111011000100111011... 1/16 + 1/128 + 1/256 . . .

1/14 0.0714285714285... 0.0001001001... 1/16 + 1/128 + 1/1024 . . .

1/15 0.0666... 0.00010001... 1/16 + 1/256 . . .

1/16 0.0625 or 0.0624999... 0.0001 or 0.0000111... 1/32 + 1/64 + 1/128 . . .

http://en.wikipedia.org/w/index.php?title=2_%28number%29
http://en.wikipedia.org/w/index.php?title=Prime_factor
http://en.wikipedia.org/w/index.php?title=Floating_point_arithmetic
http://en.wikipedia.org/w/index.php?title=Base_10

Binary number 60

Binary arithmetic
Arithmetic in binary is much like arithmetic in other numeral systems. Addition, subtraction, multiplication, and
division can be performed on binary numerals.

Addition

The circuit diagram for a binary half adder, which adds
two bits together, producing sum and carry bits.

The simplest arithmetic operation in binary is addition. Adding
two single-digit binary numbers is relatively simple, using a form
of carrying:

0 + 0 → 0
0 + 1 → 1
1 + 0 → 1
1 + 1 → 0, carry 1 (since 1 + 1 = 0 + 1 × binary 10)

Adding two "1" digits produces a digit "0", while 1 will have to be
added to the next column. This is similar to what happens in
decimal when certain single-digit numbers are added together; if the result equals or exceeds the value of the radix
(10), the digit to the left is incremented:

5 + 5 → 0, carry 1 (since 5 + 5 = 10 carry 1)
7 + 9 → 6, carry 1 (since 7 + 9 = 16 carry 1)

This is known as carrying. When the result of an addition exceeds the value of a digit, the procedure is to "carry" the
excess amount divided by the radix (that is, 10/10) to the left, adding it to the next positional value. This is correct
since the next position has a weight that is higher by a factor equal to the radix. Carrying works the same way in
binary:

 1 1 1 1 1 (carried digits)

 0 1 1 0 1

+ 1 0 1 1 1

= 1 0 0 1 0 0 = 36

In this example, two numerals are being added together: 011012 (1310) and 101112 (2310). The top row shows the
carry bits used. Starting in the rightmost column, 1 + 1 = 102. The 1 is carried to the left, and the 0 is written at the
bottom of the rightmost column. The second column from the right is added: 1 + 0 + 1 = 102 again; the 1 is carried,
and 0 is written at the bottom. The third column: 1 + 1 + 1 = 112. This time, a 1 is carried, and a 1 is written in the
bottom row. Proceeding like this gives the final answer 1001002 (36 decimal).
When computers must add two numbers, the rule that: x xor y = (x + y) mod 2 for any two bits x and y allows for
very fast calculation, as well.
A simplification for many binary addition problems is the Long Carry Method or Brookhouse Method of Binary
Addition. This method is generally useful in any binary addition where one of the numbers has a long string of “1”
digits. For example the following large binary numbers can be added in two simple steps without multiple carries
from one place to the next.

 1 1 1 1 1 1 1 1 (carried digits) (Long Carry Method)

 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0

+ 1 0 1 0 1 1 0 0 1 1 Versus: + 1 0 1 0 1 1 0 0 1 1 add crossed out digits first

----------------------- + 1 0 0 0 1 0 0 0 0 0 0 = sum of crossed out digits

= 1 1 0 0 1 1 1 0 0 0 1 ----------------------- now add remaining digits

http://en.wikipedia.org/w/index.php?title=Arithmetic
http://en.wikipedia.org/w/index.php?title=Circuit_diagram
http://en.wikipedia.org/w/index.php?title=Adder_%28electronics%29
http://en.wikipedia.org/w/index.php?title=File%3AHalf_Adder.svg
http://en.wikipedia.org/w/index.php?title=Exclusive_or
http://en.wikipedia.org/w/index.php?title=Modulo_operation
http://en.wikipedia.org/w/index.php?title=Long_Carry_Method
http://en.wikipedia.org/w/index.php?title=Brookhouse_Method_of_Binary_Addition
http://en.wikipedia.org/w/index.php?title=Brookhouse_Method_of_Binary_Addition

Binary number 61

 1 1 0 0 1 1 1 0 0 0 1

In this example, two numerals are being added together: 1 1 1 0 1 1 1 1 1 02 (95810) and 1 0 1 0 1 1 0 0 1 12 (69110).
The top row shows the carry bits used. Instead of the standard carry from one column to the next, the lowest
place-valued "1" with a "1" in the corresponding place value beneath it may be added and a "1" may be carried to
one digit past the end of the series. These numbers must be crossed off since they are already added. Then simply
add that result to the uncanceled digits in the second row. Proceeding like this gives the final answer 1 1 0 0 1 1 1 0 0
0 12 (164910).

Addition table

0 1

0 0 1

1 1 10

The binary addition table is similar, but not the same, as the truth table of the logical disjunction operation . The
difference is that , while .

Subtraction
Subtraction works in much the same way:

0 − 0 → 0
0 − 1 → 1, borrow 1
1 − 0 → 1
1 − 1 → 0

Subtracting a "1" digit from a "0" digit produces the digit "1", while 1 will have to be subtracted from the next
column. This is known as borrowing. The principle is the same as for carrying. When the result of a subtraction is
less than 0, the least possible value of a digit, the procedure is to "borrow" the deficit divided by the radix (that is,
10/10) from the left, subtracting it from the next positional value.

 * * * * (starred columns are borrowed from)

 1 1 0 1 1 1 0

− 1 0 1 1 1

= 1 0 1 0 1 1 1

Subtracting a positive number is equivalent to adding a negative number of equal absolute value; computers
typically use two's complement notation to represent negative values. This notation eliminates the need for a separate
"subtract" operation. Using two's complement notation subtraction can be summarized by the following formula:
A − B = A + not B + 1

For further details, see two's complement.

http://en.wikipedia.org/w/index.php?title=Logical_disjunction%23Truth_table
http://en.wikipedia.org/w/index.php?title=Logical_disjunction
http://en.wikipedia.org/w/index.php?title=Subtraction
http://en.wikipedia.org/w/index.php?title=Negative_number
http://en.wikipedia.org/w/index.php?title=Absolute_value

Binary number 62

Multiplication
Multiplication in binary is similar to its decimal counterpart. Two numbers A and B can be multiplied by partial
products: for each digit in B, the product of that digit in A is calculated and written on a new line, shifted leftward so
that its rightmost digit lines up with the digit in B that was used. The sum of all these partial products gives the final
result.
Since there are only two digits in binary, there are only two possible outcomes of each partial multiplication:
• If the digit in B is 0, the partial product is also 0
• If the digit in B is 1, the partial product is equal to A
For example, the binary numbers 1011 and 1010 are multiplied as follows:

 1 0 1 1 (A)

 × 1 0 1 0 (B)

 0 0 0 0 ← Corresponds to a zero in B
 + 1 0 1 1 ← Corresponds to a one in B
 + 0 0 0 0

 + 1 0 1 1

 = 1 1 0 1 1 1 0

Binary numbers can also be multiplied with bits after a binary point:

 1 0 1.1 0 1 (A) (5.625 in decimal)

 × 1 1 0.0 1 (B) (6.25 in decimal)

 1.0 1 1 0 1 ← Corresponds to a one in B
 + 0 0.0 0 0 0 ← Corresponds to a zero in B
 + 0 0 0.0 0 0

 + 1 0 1 1.0 1

 + 1 0 1 1 0.1

 = 1 0 0 0 1 1.0 0 1 0 1 (35.15625 in decimal)

See also Booth's multiplication algorithm.

Multiplication table

0 1

0 0 0

1 0 1

The binary multiplication table is the same as the Truth table of the Logical conjunction operation .

http://en.wikipedia.org/w/index.php?title=Multiplication
http://en.wikipedia.org/w/index.php?title=Binary_point
http://en.wikipedia.org/w/index.php?title=Booth%27s_multiplication_algorithm
http://en.wikipedia.org/w/index.php?title=Logical_conjunction%23Truth_table
http://en.wikipedia.org/w/index.php?title=Logical_conjunction

Binary number 63

Division
Binary division is again similar to its decimal counterpart:
Here, the divisor is 1012, or 5 decimal, while the dividend is 110112, or 27 decimal. The procedure is the same as
that of decimal long division; here, the divisor 1012 goes into the first three digits 1102 of the dividend one time, so a
"1" is written on the top line. This result is multiplied by the divisor, and subtracted from the first three digits of the
dividend; the next digit (a "1") is included to obtain a new three-digit sequence:

 1

1 0 1) 1 1 0 1 1

 − 1 0 1

 0 1 1

The procedure is then repeated with the new sequence, continuing until the digits in the dividend have been
exhausted:

 1 0 1

1 0 1) 1 1 0 1 1

 − 1 0 1

 0 1 1

 − 0 0 0

 1 1 1

 − 1 0 1

 1 0

Thus, the quotient of 110112 divided by 1012 is 1012, as shown on the top line, while the remainder, shown on the
bottom line, is 102. In decimal, 27 divided by 5 is 5, with a remainder of 2.

Square root
Binary square root is similar to its decimal counterpart too. But, it's simpler than that in decimal.

for example

 1 0 0 1

 √ 1010001
 1

 101 01

 0

 1001 100

http://en.wikipedia.org/w/index.php?title=Division_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Divisor
http://en.wikipedia.org/w/index.php?title=Dividend
http://en.wikipedia.org/w/index.php?title=Long_division
http://en.wikipedia.org/w/index.php?title=Quotient

Binary number 64

 0

 10001 10001

 10001

 0

Bitwise operations
Though not directly related to the numerical interpretation of binary symbols, sequences of bits may be manipulated
using Boolean logical operators. When a string of binary symbols is manipulated in this way, it is called a bitwise
operation; the logical operators AND, OR, and XOR may be performed on corresponding bits in two binary
numerals provided as input. The logical NOT operation may be performed on individual bits in a single binary
numeral provided as input. Sometimes, such operations may be used as arithmetic short-cuts, and may have other
computational benefits as well. For example, an arithmetic shift left of a binary number is the equivalent of
multiplication by a (positive, integral) power of 2.

Conversion to and from other numeral systems

Decimal
To convert from a base-10 integer numeral to its base-2 (binary) equivalent, the number is divided by two, and the
remainder is the least-significant bit. The (integer) result is again divided by two, its remainder is the next least
significant bit. This process repeats until the quotient becomes zero.
Conversion from base-2 to base-10 proceeds by applying the preceding algorithm, so to speak, in reverse. The bits of
the binary number are used one by one, starting with the most significant (leftmost) bit. Beginning with the value 0,
repeatedly double the prior value and add the next bit to produce the next value. This can be organized in a
multi-column table. For example to convert 100101011012 to decimal:

Prior value × 2 + Next bit Next value

0 × 2 + 1 = 1

1 × 2 + 0 = 2

2 × 2 + 0 = 4

4 × 2 + 1 = 9

9 × 2 + 0 = 18

18 × 2 + 1 = 37

37 × 2 + 0 = 74

74 × 2 + 1 = 149

149 × 2 + 1 = 299

299 × 2 + 0 = 598

598 × 2 + 1 = 1197

The result is 119710. Note that the first Prior Value of 0 is simply an initial decimal value. This method is an
application of the Horner scheme.

Binary 1 0 0 1 0 1 0 1 1 0 1

http://en.wikipedia.org/w/index.php?title=Logical_connective
http://en.wikipedia.org/w/index.php?title=Bitwise_operation
http://en.wikipedia.org/w/index.php?title=Bitwise_operation
http://en.wikipedia.org/w/index.php?title=Logical_conjunction
http://en.wikipedia.org/w/index.php?title=Logical_disjunction
http://en.wikipedia.org/w/index.php?title=Exclusive_disjunction
http://en.wikipedia.org/w/index.php?title=Negation
http://en.wikipedia.org/w/index.php?title=Arithmetic_shift
http://en.wikipedia.org/w/index.php?title=Division_by_two
http://en.wikipedia.org/w/index.php?title=Least-significant_bit
http://en.wikipedia.org/w/index.php?title=Horner_scheme

Binary number 65

Decimal 1×210 + 0×29 + 0×28 + 1×27 + 0×26 + 1×25 + 0×24 + 1×23 + 1×22 + 0×21 + 1×20 = 1197

The fractional parts of a number are converted with similar methods. They are again based on the equivalence of
shifting with doubling or halving.

In a fractional binary number such as 0.110101101012, the first digit is , the second , etc. So if there is a
1 in the first place after the decimal, then the number is at least , and vice versa. Double that number is at least 1.
This suggests the algorithm: Repeatedly double the number to be converted, record if the result is at least 1, and then
throw away the integer part.
For example, 10, in binary, is:

Converting Result

0.

0.0

0.01

0.010

0.0101

Thus the repeating decimal fraction 0.3... is equivalent to the repeating binary fraction 0.01... .
Or for example, 0.110, in binary, is:

Converting Result

0.1 0.

0.1 × 2 = 0.2 < 1 0.0

0.2 × 2 = 0.4 < 1 0.00

0.4 × 2 = 0.8 < 1 0.000

0.8 × 2 = 1.6 ≥ 1 0.0001

0.6 × 2 = 1.2 ≥ 1 0.00011

0.2 × 2 = 0.4 < 1 0.000110

0.4 × 2 = 0.8 < 1 0.0001100

0.8 × 2 = 1.6 ≥ 1 0.00011001

0.6 × 2 = 1.2 ≥ 1 0.000110011

0.2 × 2 = 0.4 < 1 0.0001100110

This is also a repeating binary fraction 0.00011... . It may come as a surprise that terminating decimal fractions can
have repeating expansions in binary. It is for this reason that many are surprised to discover that 0.1 + ... + 0.1, (10
additions) differs from 1 in floating point arithmetic. In fact, the only binary fractions with terminating expansions
are of the form of an integer divided by a power of 2, which 1/10 is not.
The final conversion is from binary to decimal fractions. The only difficulty arises with repeating fractions, but
otherwise the method is to shift the fraction to an integer, convert it as above, and then divide by the appropriate
power of two in the decimal base. For example:

http://en.wikipedia.org/w/index.php?title=Floating_point_arithmetic

Binary number 66

Another way of converting from binary to decimal, often quicker for a person familiar with hexadecimal, is to do so
indirectly—first converting (in binary) into (in hexadecimal) and then converting (in hexadecimal) into (

in decimal).
For very large numbers, these simple methods are inefficient because they perform a large number of multiplications
or divisions where one operand is very large. A simple divide-and-conquer algorithm is more effective
asymptotically: given a binary number, it is divided by 10k, where k is chosen so that the quotient roughly equals the
remainder; then each of these pieces is converted to decimal and the two are concatenated. Given a decimal number,
it can be split into two pieces of about the same size, each of which is converted to binary, whereupon the first
converted piece is multiplied by 10k and added to the second converted piece, where k is the number of decimal
digits in the second, least-significant piece before conversion.

Hexadecimal

0hex = 0dec = 0oct 0 0 0 0

1hex = 1dec = 1oct 0 0 0 1

2hex = 2dec = 2oct 0 0 1 0

3hex = 3dec = 3oct 0 0 1 1

4hex = 4dec = 4oct 0 1 0 0

5hex = 5dec = 5oct 0 1 0 1

6hex = 6dec = 6oct 0 1 1 0

7hex = 7dec = 7oct 0 1 1 1

8hex = 8dec = 10oct 1 0 0 0

9hex = 9dec = 11oct 1 0 0 1

Ahex = 10dec = 12oct 1 0 1 0

Bhex = 11dec = 13oct 1 0 1 1

Chex = 12dec = 14oct 1 1 0 0

Dhex = 13dec = 15oct 1 1 0 1

Ehex = 14dec = 16oct 1 1 1 0

Fhex = 15dec = 17oct 1 1 1 1

Binary may be converted to and from hexadecimal somewhat more easily. This is because the radix of the
hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 24, so it takes four
digits of binary to represent one digit of hexadecimal, as shown in the table to the right.
To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits:

3A16 = 0011 10102

http://en.wikipedia.org/w/index.php?title=Concatenation
http://en.wikipedia.org/w/index.php?title=0_%28number%29
http://en.wikipedia.org/w/index.php?title=1_%28number%29
http://en.wikipedia.org/w/index.php?title=2_%28number%29
http://en.wikipedia.org/w/index.php?title=3_%28number%29
http://en.wikipedia.org/w/index.php?title=4_%28number%29
http://en.wikipedia.org/w/index.php?title=5_%28number%29
http://en.wikipedia.org/w/index.php?title=6_%28number%29
http://en.wikipedia.org/w/index.php?title=7_%28number%29
http://en.wikipedia.org/w/index.php?title=8_%28number%29
http://en.wikipedia.org/w/index.php?title=9_%28number%29
http://en.wikipedia.org/w/index.php?title=10_%28number%29
http://en.wikipedia.org/w/index.php?title=11_%28number%29
http://en.wikipedia.org/w/index.php?title=12_%28number%29
http://en.wikipedia.org/w/index.php?title=13_%28number%29
http://en.wikipedia.org/w/index.php?title=14_%28number%29
http://en.wikipedia.org/w/index.php?title=15_%28number%29
http://en.wikipedia.org/w/index.php?title=Radix

Binary number 67

E716 = 1110 01112
To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits
isn't a multiple of four, simply insert extra 0 bits at the left (called padding). For example:

10100102 = 0101 0010 grouped with padding = 5216
110111012 = 1101 1101 grouped = DD16

To convert a hexadecimal number into its decimal equivalent, multiply the decimal equivalent of each hexadecimal
digit by the corresponding power of 16 and add the resulting values:

C0E716 = (12 × 163) + (0 × 162) + (14 × 161) + (7 × 160) = (12 × 4096) + (0 × 256) + (14 × 16) + (7 × 1) =
49,38310

Octal
Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two
(namely, 23, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and
binary numerals is the same as for the first eight digits of hexadecimal in the table above. Binary 000 is equivalent to
the octal digit 0, binary 111 is equivalent to octal 7, and so forth.

Octal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Converting from octal to binary proceeds in the same fashion as it does for hexadecimal:
658 = 110 1012
178 = 001 1112

And from binary to octal:
1011002 = 101 1002 grouped = 548
100112 = 010 0112 grouped with padding = 238

And from octal to decimal:
658 = (6 × 81) + (5 × 80) = (6 × 8) + (5 × 1) = 5310
1278 = (1 × 82) + (2 × 81) + (7 × 80) = (1 × 64) + (2 × 8) + (7 × 1) = 8710

http://en.wikipedia.org/w/index.php?title=Padding_%28cryptography%29%23Bit_padding
http://en.wikipedia.org/w/index.php?title=Power_of_two

Binary number 68

Representing real numbers
Non-integers can be represented by using negative powers, which are set off from the other digits by means of a
radix point (called a decimal point in the decimal system). For example, the binary number 11.012 thus means:

1 × 21 (1 × 2 = 2) plus

1 × 20 (1 × 1 = 1) plus

0 × 2−1 (0 × ½ = 0) plus

1 × 2−2 (1 × ¼ = 0.25)

For a total of 3.25 decimal.

All dyadic rational numbers have a terminating binary numeral—the binary representation has a finite number of

terms after the radix point. Other rational numbers have binary representation, but instead of terminating, they recur,
with a finite sequence of digits repeating indefinitely. For instance

= = 0.0101010101…2

= = 0.10110100 10110100 10110100...2
The phenomenon that the binary representation of any rational is either terminating or recurring also occurs in other
radix-based numeral systems. See, for instance, the explanation in decimal. Another similarity is the existence of
alternative representations for any terminating representation, relying on the fact that 0.111111… is the sum of the
geometric series 2−1 + 2−2 + 2−3 + ... which is 1.
Binary numerals which neither terminate nor recur represent irrational numbers. For instance,
• 0.10100100010000100000100… does have a pattern, but it is not a fixed-length recurring pattern, so the number

is irrational
• 1.0110101000001001111001100110011111110… is the binary representation of , the square root of 2,

another irrational. It has no discernible pattern. See irrational number.

Notes
[1] Sanchez, Julio; Canton, Maria P. (2007). Microcontroller programming : the microchip PIC. Boca Raton, Florida: CRC Press. p. 37.

ISBN 0-8493-7189-9
[2] W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
[3] Binary Numbers in Ancient India (http:/ / home. ica. net/ ~roymanju/ Binary. htm)
[4] Math for Poets and Drummers (http:/ / www. sju. edu/ ~rhall/ Rhythms/ Poets/ arcadia. pdf) (pdf, 145KB)
[5] "Binary Numbers in Ancient India" (http:/ / home. ica. net/ ~roymanju/ Binary. htm). .
[6] Stakhov, Alexey; Stakhov, Alekseĭ; Olsen, Scott (2009). The mathematics of harmony: from Euclid to contemporary mathematics and

computer science (http:/ / books. google. com/ books?id=K6fac9RxXREC). ISBN 978-981-277-582-5. .
[7] Ryan, James A. (January 1996). "Leibniz' Binary System and Shao Yong's "Yijing"". Philosophy East and West (University of Hawaii Press)

46 (1): 59–90. doi:10.2307/1399337. JSTOR 1399337.
[8] Bacon, Francis (1605). "The Advancement of Learning" (http:/ / home. hiwaay. net/ ~paul/ bacon/ advancement/ book6ch1. html). London.

pp. Chapter 1.
[9] Leibniz G., Explication de l'Arithmétique Binaire, Die Mathematische Schriften, ed. C. Gerhardt, Berlin 1879, vol.7, p.223; Engl. transl.

(http:/ / www. leibniz-translations. com/ binary. htm)
[10] Aiton, Eric J. (1985). Leibniz: A Biography. Taylor & Francis. pp. 245–8. ISBN 0-85274-470-6
[11] Boole, George (2009) [1854]. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and

Probabilities (http:/ / www. gutenberg. org/ etext/ 15114) (Macmillan, Dover Publications, reprinted with corrections [1958] ed.). New York:
Cambridge University Press. ISBN 978-1-108-00153-3. .

[12] Shannon, Claude Elwood (1940). A symbolic analysis of relay and switching circuits (http:/ / hdl. handle. net/ 1721. 1/ 11173). Cambridge:
Massachusetts Institute of Technology. .

http://en.wikipedia.org/w/index.php?title=Radix_point
http://en.wikipedia.org/w/index.php?title=Decimal_point
http://en.wikipedia.org/w/index.php?title=Dyadic_fraction
http://en.wikipedia.org/w/index.php?title=Rational_numbers
http://en.wikipedia.org/w/index.php?title=Decimal
http://en.wikipedia.org/w/index.php?title=Geometric_series
http://en.wikipedia.org/w/index.php?title=Irrational_number
http://en.wikipedia.org/w/index.php?title=Square_root
http://en.wikipedia.org/w/index.php?title=Irrational_number
http://home.ica.net/~roymanju/Binary.htm
http://www.sju.edu/~rhall/Rhythms/Poets/arcadia.pdf
http://home.ica.net/~roymanju/Binary.htm
http://books.google.com/books?id=K6fac9RxXREC
http://en.wikipedia.org/w/index.php?title=Francis_Bacon
http://home.hiwaay.net/~paul/bacon/advancement/book6ch1.html
http://www.leibniz-translations.com/binary.htm
http://www.gutenberg.org/etext/15114
http://hdl.handle.net/1721.1/11173

Binary number 69

[13] "National Inventors Hall of Fame – George R. Stibitz" (http:/ / www. invent. org/ hall_of_fame/ 140. html). 20 August 2008. . Retrieved 5
July 2010.

[14] "George Stibitz : Bio" (http:/ / stibitz. denison. edu/ bio. html). Math & Computer Science Department, Denison University. 30 April 2004. .
Retrieved 5 July 2010.

[15] "Pioneers – The people and ideas that made a difference – George Stibitz (1904–1995)" (http:/ / www. kerryr. net/ pioneers/ stibitz. htm).
Kerry Redshaw. 20 February 2006. . Retrieved 5 July 2010.

[16] "George Robert Stibitz – Obituary" (http:/ / ei. cs. vt. edu/ ~history/ Stibitz. html). Computer History Association of California. 6 February
1995. . Retrieved 5 July 2010.

References
• Sanchez, Julio; Canton, Maria P. (2007). Microcontroller programming: the microchip PIC. Boca Raton, FL:

CRC Press. p. 37. ISBN 0-8493-7189-9.

External links
• A brief overview of Leibniz and the connection to binary numbers (http:/ / www. kerryr. net/ pioneers/ leibniz.

htm)
• Binary System (http:/ / www. cut-the-knot. org/ do_you_know/ BinaryHistory. shtml) at cut-the-knot
• Conversion of Fractions (http:/ / www. cut-the-knot. org/ blue/ frac_conv. shtml) at cut-the-knot
• Binary Digits (http:/ / www. mathsisfun. com/ binary-digits. html) at Math Is Fun (http:/ / www. mathsisfun. com/

)
• How to Convert from Decimal to Binary (http:/ / www. wikihow. com/ Convert-from-Decimal-to-Binary) at

wikiHow
• Learning exercise for children at CircuitDesign.info (http:/ / www. circuitdesign. info/ blog/ 2008/ 06/

the-binary-number-system-part-2-binary-weighting/)
• Binary Counter with Kids (http:/ / gwydir. demon. co. uk/ jo/ numbers/ binary/ kids. htm)
• “Magic” Card Trick (http:/ / gwydir. demon. co. uk/ jo/ numbers/ binary/ cards. htm)
• Quick reference on Howto read binary (http:/ / www. mycomputeraid. com/ networking-support/

general-networking-support/ howto-read-binary-basics/)
• Binary converter to HEX/DEC/OCT with direct access to bits (http:/ / calc. 50x. eu/)
• From one to another number system (https:/ / www. codeproject. com/ Articles/ 350252/

From-one-to-another-number-system/), article related to creating computer program for conversion of number
from one to another number system with source code written in C#

• From one to another number system (https:/ / sites. google. com/ site/ periczeljkosmederevoenglish/ matematika/
conversion-from-one-to-another-number-system/ From one to another number system. zip?attredirects=0/), free
computer program for conversion of number from one to another number system written in C#, it is necessary
.NET framework 2.0

• From one to another number system (https:/ / sites. google. com/ site/ periczeljkosmederevoenglish/ matematika/
conversion-from-one-to-another-number-system/ Solution with source code From one to another number system.
zip?attredirects=0& d=1/), full solution with open source code for conversion of number from one to another
number system written in IDE SharpDevelop ver 4.1, C#

http://www.invent.org/hall_of_fame/140.html
http://stibitz.denison.edu/bio.html
http://www.kerryr.net/pioneers/stibitz.htm
http://ei.cs.vt.edu/~history/Stibitz.html
http://www.kerryr.net/pioneers/leibniz.htm
http://www.kerryr.net/pioneers/leibniz.htm
http://www.cut-the-knot.org/do_you_know/BinaryHistory.shtml
http://en.wikipedia.org/w/index.php?title=Cut-the-knot
http://www.cut-the-knot.org/blue/frac_conv.shtml
http://en.wikipedia.org/w/index.php?title=Cut-the-knot
http://www.mathsisfun.com/binary-digits.html
http://www.mathsisfun.com/
http://www.mathsisfun.com/
http://www.wikihow.com/Convert-from-Decimal-to-Binary
http://en.wikipedia.org/w/index.php?title=WikiHow
http://www.circuitdesign.info/blog/2008/06/the-binary-number-system-part-2-binary-weighting/
http://www.circuitdesign.info/blog/2008/06/the-binary-number-system-part-2-binary-weighting/
http://gwydir.demon.co.uk/jo/numbers/binary/kids.htm
http://gwydir.demon.co.uk/jo/numbers/binary/cards.htm
http://www.mycomputeraid.com/networking-support/general-networking-support/howto-read-binary-basics/
http://www.mycomputeraid.com/networking-support/general-networking-support/howto-read-binary-basics/
http://calc.50x.eu/
https://www.codeproject.com/Articles/350252/From-one-to-another-number-system/
https://www.codeproject.com/Articles/350252/From-one-to-another-number-system/
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
https://sites.google.com/site/periczeljkosmederevoenglish/matematika/conversion-from-one-to-another-number-system/From%20one%20to%20another%20number%20system.zip?attredirects=0/
https://sites.google.com/site/periczeljkosmederevoenglish/matematika/conversion-from-one-to-another-number-system/From%20one%20to%20another%20number%20system.zip?attredirects=0/
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=.NET_Framework
https://sites.google.com/site/periczeljkosmederevoenglish/matematika/conversion-from-one-to-another-number-system/Solution%20with%20source%20code%20From%20one%20to%20another%20number%20system.zip?attredirects=0&d=1/
https://sites.google.com/site/periczeljkosmederevoenglish/matematika/conversion-from-one-to-another-number-system/Solution%20with%20source%20code%20From%20one%20to%20another%20number%20system.zip?attredirects=0&d=1/
https://sites.google.com/site/periczeljkosmederevoenglish/matematika/conversion-from-one-to-another-number-system/Solution%20with%20source%20code%20From%20one%20to%20another%20number%20system.zip?attredirects=0&d=1/
http://en.wikipedia.org/w/index.php?title=SharpDevelop

Article Sources and Contributors 70

Article Sources and Contributors
Two's complement Source: http://en.wikipedia.org/w/index.php?oldid=542375324 Contributors: !melquiades, 2001:44B8:41AB:A600:B9C7:F091:1D3:DD2E, 4pq1injbok, AS, Aberglaube,
Abhineetnazi, Addps4cat, Adrianwn, Aesopos, Ahy1, Ailurophobia, Ajblue98, Amit man, Andrei Stroe, Aninhumer, Anonymous Dissident, Apurba saitech, Arnies, ArnoldReinhold, Ashenai,
Avono, BD2412, BazookaJoe, Bdesham, BeIsKr, BenFrantzDale, Bender235, BiT, Bkkbrad, Bolisho, Booyabazooka, Brian Kendig, C xong, Cardboardbox, Charles Matthews, Chelmite, Chinju,
Chris Roy, ChrisGualtieri, Copyeditor42, Couturier, Cybercobra, DARTH SIDIOUS 2, Dan Granahan, David-Sarah Hopwood, DavidCary, Davron, Dcoetzee, Deadkid dk, Decrypt3, Dicklyon,
Dirk gently, Disavian, Discospinster, Dissident, Dysprosia, ESkog, Eeekster, EnJx, EncMstr, Eregli bob, Eric119, Escape Orbit, Etu, Evergreen9, Firoz Pervez, Frencheigh, Fresheneesz, Giftlite,
Gnowor, GraemeMcRae, Graham87, Grover cleveland, Halo2, Hao2lian, HappyDog, Hephaestos, Highway Hitchhiker, Holger Blasum, Horacelamb, Hydryad, I dream of horses, Iain.mcclatchie,
Incnis Mrsi, J.delanoy, J04n, Jackelfive, Jake Nelson, Jangirke, Jasonbdaniels, Jcdonelson, Jmmonde, Jostikas, Jruderman, Jth299, Kbdank71, Kcarnold, Kingpin13, Klickagent, Kvng, LOL,
Laogeodritt, Lavajoe, Loadmaster, LuisFilipeM, Luna Santin, Lyoko is Cool, Machine Elf 1735, Magioladitis, Markus Kuhn, Martin451, Maximaximax, Maxis ftw, McSly, Mekong Bluesman,
Melchoir, Michael Hardy, Mindbuilder, Mindmatrix, Miquonranger03, Mitjak, Mrscrith, Mysid, NMocho, Nathanael Bar-Aur L., Nilfanion, Nornagon, Nwbeeson, Nxavar, OsamaBinLogin, Paul
August, Pengo, Phgao, Pkrecker, Plugwash, Positivecharge, Prashantgonarkar, Quuxplusone, Qwerty271828, Rahulchandra, Reaper Eternal, Red Thrush, RedWolf, Redfearnb, RexNL,
Richellis333, Rick Sidwell, Robert K S, Rohanmittal, Rootless, Ryk, Scottcraig, Sdedeo, Shmoib, Stalinbulldog, Supaari, SwirlBoy39, Synergy, Tata2007, Teimu.tm, The Thing That Should Not
Be, Thecheesykid, Tobias Bergemann, Toothgrinder, Trotter, Uncompetence, Vadmium, Vic226, Walor, Wapcaplet, Wasdavid, WimdeValk, Ximalas, Yamamoto Ichiro, Yaron K., Yayay,
Zanzabarr80, Zero sharp, ZeroOne, Zhjesse, Zundark, 488 anonymous edits

Ones' complement Source: http://en.wikipedia.org/w/index.php?oldid=540708703 Contributors: 2620:0:1000:1301:BE30:5BFF:FEDB:2AE2, Bajsejohannes, BiT, Black.jeff, Bobrayner, CBM,
ChrisCPearson, Cybercobra, DavidCary, Delusion23, Demonkoryu, Derschmidt, Deryck Chan, Dmcq, Entomy, Gandalf61, GermanX, Gwen-chan, Johnuniq, KentOlsen, Mgnt, Michael Hardy,
Mirzasehr, Mormegil, NawlinWiki, Nullzero, Oleg Alexandrov, Pageman, Pie4all88, Prashantgonarkar, Tgeairn, The Interior, Tuhertz, Vadmium, WestwoodMatt, 26 anonymous edits

Binary-coded decimal Source: http://en.wikipedia.org/w/index.php?oldid=540878791 Contributors: 137.111.131.xxx, AVRS, Acerperi, Adi.mmmec, AgadaUrbanit, Ale jrb, Alphadriven,
AndrewHowse, Anomie, Arabic Pilot, ArnoldReinhold, Audriusa, Barvinok, Behco, Bigdumbdinosaur, Blahma, Bobfran, Brian0918, BrucebWiki, CRGreathouse, Camw, ChadCloman, Choster,
Ciaran H, Ciphers, Clone53421, Comet--berkeley, Conversion script, DARTH SIDIOUS 2, DMG413, DanielEng, Davehi1, Dcoetzee, Dicklyon, Dragana666, Dzubint, Eliz81, EncMstr, FlyHigh,
Fresheneesz, Fswarbrick, Furrykef, GRAHAMUK, Gazilion, Ghettoblaster, Giftlite, Gilliam, GoingBatty, Hashar, Henrygb, Igiffin, Intgr, JaGa, Jaw2jaw, JayC, Jef-Infojef, Jeh, Jim.belk, Joe
Decker, Kaini, Kbdank71, Keka, Kencf0618, Kevleyski, Kri, Krischik, Krypper, Kvdveer, Kwamikagami, Lbs6380, Leuko, Loadmaster, Lugia2453, Matusz, Mcapdevila, MelbourneStar, Mfc,
Michael Hardy, Mikhail Ryazanov, Miraceti, Mirror Vax, Mr Elmo, MrOllie, Murray Langton, Musiphil, Neelix, Nimur, Niteowlneils, Nnp, Obradovic Goran, Octahedron80, Oli Filth,
PacoMarkE, Piano non troppo, Plugwash, Pointillist, Potaco99, Qllach, Quota, R. S. Shaw, RTC, Raidon Kane, Reach Out to the Truth, RexNL, Rich Farmbrough, Rominandreu, Rwwww,
Sabri76, Securiger, Shadowjams, ShelfSkewed, Shlomital, SimonP, SimonTrew, Sobreira, Speight, Superm401, Swerdnaneb, Tesi1700, Tharos, Theresa knott, Thevenerablez, Tim Parenti,
Tombomp, Tsunanet, Vadmium, VampWillow, Vrenator, Vwollan, Warut, Wbm1058, Wikiborg2, Wstorr, X!, ZeroOne, کاشف عقیل, आशीष भटनागर, 253 anonymous edits

Gray code Source: http://en.wikipedia.org/w/index.php?oldid=542555463 Contributors: A876, AJP, Acerperi, Ahoerstemeier, Ahseaton, AileTheAlien, Andy Dingley, Animagi1981, BAxelrod,
BD2412, Bender235, Bggoldie, Bobblehead, Bogdangiusca, BrotherE, Bubba73, Bunyk, Cburnett, Charles Matthews, Charvest, Cholling, Chris the speller, ChrisEich, CosineKitty, Cyp, David
Eppstein, David.Monniaux, DavidCary, Daxx wp, Dcoetzee, Deacs33, Demi, Denelson83, Dicklyon, Dina, Dispenser, Djfeldman, Dr0b3rts, Droll, Edratzer, Egg, El C, Elias, Elphion, Emvee,
Fcdesign, Fresheneesz, Gerbrant, Giftlite, Glrx, Gnorthup, GoingBatty, Haham hanuka, Hariva, Heron, Hgrosser, Hv, Iamfscked, Inductiveload, Iridescent, Isaac Dupree, Isiah Schwartz,
JLaTondre, Jaiguru42, Jan olieslagers, Jason Recliner, Esq., Jeff 113, Jim1138, Jjbeard, Johnmorgan, Johnuniq, Jos.koot, Jturkia, Kanesue, Kateshortforbob, Kilom691, Kjkjava, Law, Lbaralgeen,
Leonard G., LilHelpa, Linas, MER-C, MSGJ, Machine Elf 1735, MarkSweep, Mate2code, MattGiuca, Matusz, Max711, Maxal, Maxalot, Mellum, Michael Hardy, Mike1024, Mild Bill Hiccup,
MooMan1, MrOllie, MyrddinE, Nick Pisarro, Jr., Nikevich, Nneonneo, Noe, Oashi, Ocatecir, Ohiosoil, Pacifier, Pakaran, Pgimeno, PierreAbbat, Piet Delport, Plamka, Pleasantville, Plugwash,
Prashantgonarkar, PuerExMachina, Qwyrxian, RTC, RayKiddy, Requestion, Rich Farmbrough, Ricky81682, Rjwilmsi, RobH (2004 account), Ronz, Sakurambo, SciCompTeacher, Sciyoshi,
Seantellis, Seraphimblade, Shellreef, Sjock, Smalljim, Snowolf, Sun Creator, SuneJ, Suruena, Svick, Tedickey, TheNightFly, Tomo, TutterMouse, Vanish2, Vanka5, Wapcaplet, Westley Turner,
Wikkrockiana, Winzurf, Wwoods, XJamRastafire, Yahya Abdal-Aziz, Yoshigev, Yworo, ZeroOne, Zeycus, 210 anonymous edits

Hexadecimal Source: http://en.wikipedia.org/w/index.php?oldid=542146703 Contributors: 25or6to4, A D Monroe III, A4, AJRobbins, Acroterion, Adhemar, Aditya, Ae.davies1992,
Aforencich, AgentPeppermint, Ahoerstemeier, AirdishStraus, Ajraddatz, Alansohn, Alekjds, Alethiareg, AlexWaelde, Alfio, Alfvaen, Andre Engels, AndreCapaGarcia, Andrejj, Android Mouse,
Angela, AnnaFrance, Anomie, Anwar saadat, Arthur Rubin, Ashenai, Attys, Aulis Eskola, AxelBoldt, B4hand, Barium, Bart133, Bearboat, Belamp, Beland, BenRG, Beofluff, Bernard Ladenthin,
Bevo, Binadot, Biot, BlakeCS, BlastOButter42, Blobglob, Bobo192, Bodinagamin, Bongwarrior, Bornhj, Bufdaemon, Bunnyhop11, Calmer Waters, Calmypal, Can't sleep, clown will eat me,
Carre, Cassivs, Chridd, Chris 73, Chris j wood, Chris the speller, Chrislk02, Chubbles, CloneDeath, Colonies Chris, Concordia, Conversion script, Cool halo 2, Copyeditor42, Corpcon,
Courcelles, Cronholm144, Curps, Cyp, D, DV8 2XL, Daggerstab, Dantheman4114, DarkJXD, Darklilac, DarthGanon, Daverocks, David Woodward, Dcoetzee, Defproc, DerHexer,
Discospinster, Divineword, Dmillard10, Don4of4, DookieDungeon, Doradus, Douglas W. Jones, Dr.Luke.sc, Drphilharmonic, Duoservo, DylanW, Dzogchenpa, ESkog, Easyguyevo, Edward,
Egil, Elektron, Elium2, Elockid, Elphion, EncMstr, Equazcion, Eric119, Errorx666, Excirial, Exert, Extransit, Ezeu, Fastilysock, Felixaldonso, Fireaxe888, FlyingPenguins, Fran Rogers,
FrankHamersley, Fredrik, Fubaz, Fudoreaper, Furrykef, Gandalf44, Gclinkscales, Gene Nygaard, Gerbrant, Gfoley4, Ghettoblaster, Giftlite, Gindar, Glenn, Glenn L, Gniw, Golbez,
GorillazFanAdam, Graham87, Guy M, Guyalsfere, HTML2011, HYC, Haakon, Hamerbro, Hanacy, Hans Adler, Hauptmech, Havarhen, HenkeB, Henkt, Heron, Hibou8, Hirzel, Hmrox,
Huppybanny, IMSoP, IanOsgood, Idefix76, Incnis Mrsi, Indiana State, Inkypaws, IntrigueBlue, Isarra (HG), J'raxis, J.delanoy, J7, JIP, JTN, JaGa, James175, Jao, Jeronimo, Jerryobject,
Jerryseinfeld, Jh51681, Jiddisch, Jndrline, JoanneB, John Vandenberg, Johnuniq, Josh Parris, Jovianeye, Jur123, Jvr725, KMcD, Kaihsu, Karl E. V. Palmen, Karl Palmen, Kbdank71, Keka, Kelly
Martin, Kevmitch, Kim Bruning, Kluonius, Ktsquare, Kukini, Kuru, Lament, Lanukkunal, LeoNomis, Leotolstoy, Liftarn, Light current, Lightminute, Linas, Livajo, LobStoR, Lotje, Lugia2453,
M.O.X, MBerrill, MER-C, MK8, Mac, Maelnuneb, Magister Mathematicae, Malo, MarkSweep, Marnanel, Masciare, Masterofpsi, Match 213, Mate2code, MathsIsFun, MattGiuca,
MatthewMastracci, Mausy5043, Meaghan, Meco, Mellum, Memorized128, Mendalus, Michael Hardy, MichaelBillington, Mike Rosoft, Minesweeper, Minna Sora no Shita, Modest Genius,
Mooiehoed, Moonwolf24, Mr.briancochran, Mschel, Msikma, Mtruch, Munthe, Myanw, Mythsearcher, Nageh, Nateho, NawlinWiki, Nharipra, Nickptar, Nicolas1981, Nihiltres, Noe,
Nominaladversary, Norm mit, NrDg, Nucleosynthesis, Nø, OKeh, Oalders, Obradovic Goran, Oleg Alexandrov, Oli Filth, Omegatron, Opelio, Orderud, Oxymoron83, PCHS-NJROTC, PZ,
Pakaran, Palfrey, Panchoy, Pascal666, Patrick, Paul August, Paul Martin, Paul Stansifer, Paulmmn, Pausch, Peter 2005, Pharaoh of the Wizards, Philip Trueman, Phluid61, PierreAbbat, Pkchan,
Plugwash, Pmanderson, Poweroid, Prodego, Pseudomonas, Psr12, Quarkington, Quarl, Quercus solaris, R3m0t, RJASE1, RTC, Radix, Radon210, Raul654, Rbonvall, RedWolf, Reswobslc,
Rettetast, ReyBrujo, Rfsmit, Ricardo Cancho Niemietz, Rich Farmbrough, Rintrah, Robbe, Robert, Robo37, Rorro, Rrburke, Rts.bn.vs, Rwessel, Rünno, S91by, Saraphim, Scepia, Scottmsg,
Sdoking, Sege1701, Sesu Prime, Shadow1, Shishirmital, SimonP, Sjakkalle, Slady, Sligocki, Smart people USA, Smaug123, SoCalSuperEagle, Specs112, Spiff, Splibubay, Splintax,
Spyforthemoon, Srleffler, Starbuck-2, StaticVision, Stephen B Streater, Stephenb, Stmrlbs, StuartBrady, StuartMurray, Super-Magician, Swpb, TAKASUGI Shinji, THEN WHO WAS PHONE?,
TakuyaMurata, Tassedethe, Tcsetattr, Techman224, Ted Longstaffe, Tenbaset, Terrorist of bush, The Anome, The Mysterious Gamer, The Son of Man, The zoro, TheStarman,
Thewikicontributor, Thingg, Think outside the box, Thorwald, Thrane, Tide rolls, Tikiwont, Timmeh77, TobyDZ, Tomasf, Tomdobb, Tony Fox, Trang Oul, Trevorparsons, Tripodics, Trishm,
Triviator, Ttam, TwilligToves, Uaxuctum, UberScienceNerd, Unkx80, Unused0022, Uriyan, Vadmium, VampWillow, Versus22, Vsion, Vwollan, Waldir, Wapcaplet, Wayfarer, Waylonbutler,
Weeliljimmy, Wereon, Wickey-nl, Wiki alf, Wimt, Wizardist, Wknight94, Wrp103, Wutsje, Wyatt915, Wysprgr2005, Wzwz, Yksyksyks, Zac439, Zfr, Zzedar, ماني, 에멜무지로, 824 anonymous
edits

Octal Source: http://en.wikipedia.org/w/index.php?oldid=542871073 Contributors: 198.92.68.xxx, 28bytes, ATMarsden, Abeam89, Adam1213, Ahruman, Alansohn, Angr, Arthur Rubin,
Billinghurst, Binksternet, Bjankuloski06en, BjörnBergman, Black Falcon, Bluerasberry, Bobyllib, Burn, CBM, CJLL Wright, Carson grey, Carsrac, CattleGirl, Caue.cm.rego, Chadders, Colonies
Chris, CondeNasty, Conversion script, Cyp, Damicatz, Dan Hoey, Delirium, Der.Archivar, Dirac1933, Dodgerdave, Donfbreed, Douglas W. Jones, DrZarkov, Dwandelt, Eakin, EdBever, Egil,
Elphion, Evil Monkey, Fabimator, Fanatix, Fastfission, Feezo, Frap, FrenchIsAwesome, Furrykef, Giftlite, Graham87, Grenavitar, Hpa, Icairns, Incnis Mrsi, Jag164, Jjunken, Jonathan Baker,
Karl E. V. Palmen, Kbdank71, Keka, Kjoonlee, Kungfuadam, Kuru, Laurentius, Letter Ezh, Lexusuns, Lfcdolbear, Librarian2, LolJIZMASTERlol, Lucas.Yamanishi, MER-C, Madmardigan53,
Magetoo, Markjreed, Marlow4, MatthewMastracci, Meco, Mendalus, Merovingian, Michael Angelkovich, Michael Hardy, Mika1h, Mild Bill Hiccup, MrOllie, Mulad, Mwtoews, Myrvin, Nevyn,
Nic.stage, Nixdorf, Noe, Nonagonal Spider, OKeh, Omicronpersei8, Orphan Wiki, Paul August, PhilKnight, Pictureuploader, Pinethicket, Pmlineditor, Pne, Pseudoanonymous, Pseudomonas,
RTC, Rachel1, Raistlin11325, RedWolf, Regenspaziergang, Reisio, Robo37, Rodrigo Novaes, Rorro, RoseParks, SebastianHelm, SimonP, Sirius nst, Skalman, Slowking Man, Stephen MUFC,
TAKASUGI Shinji, Tgeairn, The dom martin, Thewikicontributor, Thorwald, Tobias Bergemann, Trackstar789, Tristostan, Tunguuz, TwoTwoHello, Ugncreative Usergname, Vadmium,
Vishnava, Wapcaplet, Wernher, Whoever blocks me has no life!, Wikitiki89, YaltaC, 296 anonymous edits

Binary number Source: http://en.wikipedia.org/w/index.php?oldid=542231905 Contributors: .Absolution., 1exec1, 2001:630:63:192:358C:C707:2254:3889,
2602:306:CDC3:90B0:57:C3BE:A533:28E2, 28421u2232nfenfcenc, 2D, 2andrewknyazev, 4, 4twenty42o, 999retard, A.kamburov, ALE!, Abc518, Abu-Fool Danyal ibn Amir al-Makhiri,
Adashiel, Addshore, AdjustShift, Aerographer1981, Ahoerstemeier, Airplaneman, Aitias, Alansohn, Aleniko17, AlexJ, Alexf, Amesville, Amorymeltzer, Amplitude101, Andrejj, AndrewKepert,
Andy Dingley, Andypandyjay, Anomie, Anonymous Dissident, Anonymous editor, Antandrus, Apteva, Arabic Pilot, Arichnad, Arjun024, Arthur Rubin, Asdfg1234, Assassin15, Astral,
AubreyEllenShomo, Auroranorth, Aursani, Avant Guard, Avazelda13, Azcolvin429, Azreal Umbra, Aztects, Baa, Baiji, Bart133, Baseball Watcher, Bbourne20, Beetstra, Belovedfreak, Ben
Kidwell, Bigbluefish, Bjankuloski06en, Blackworm, BlaenkDenum, Blanche of King's Lynn, Blue520, Bluerasberry, Bobo192, Bookandcoffee, Brews ohare, Britannic124, Bulletd, Buzzlite101,
C. A. Russell, CWenger, CWii, Calmer Waters, Caltas, Camw, Can't sleep, clown will eat me, Capitalist, Capricorn42, CaribDigita, Carsrac, Castedo, Catinator, Causa sui, Chairman S., Charles
Matthews, CharlesDexterWard, Charleschuck, Chris 73, Chrislk02, Christian List, Chromaticity, Cimorcus, Citizen, CityOfSilver, Closedmouth, Cncmaster, Cometstyles, ContinueWithCaution,

Article Sources and Contributors 71

Controls.freq, Courcelles, Crohnie, Cronholm144, CryptoDerk, Cureden, Cutiepie17881, D. F. Schmidt, DVdm, Da nuke, Daganboy, Dan6hell66, Daniel Quinlan, DanielCD, Dante Shamest,
Darth Panda, David Eppstein, David McIlvenna, David n m bond, DavidCary, Dcljr, Dcoetzee, Debresser, Deeptrivia, Deggert, Dejan Jovanović, Delirium, DeniabilityPlausible, DerHexer,
Derouch, Dicklyon, Dkleeman, Dodgerdave, Dodo bird, Dogcow, Dorkenhavvon, Doug Bell, Drilnoth, Drmies, Dryman, Dungodung, Dysepsion, Dysprosia, E0steven, EEng, ESkog, Ed Poor,
EdBever, EdC, Edmarriner, Egmontaz, El C, Elegost5555, Epbr123, Erkan Yilmaz, Euryalus, Evercat, Excirial, Fabio479, Falcon8765, FallingGravity, Farosdaughter, Flewis, Florian Blaschke,
Fredrik, Fresheneesz, Fritz Jörn, Frozenevolution, Fæ, GRAHAMUK, Gandalf61, Gav89, Gco, Gdo01, Giftlite, Gilliam, Gimboid13, GinaDana, Glane23, Gogo Dodo, GorillazFanAdam, Grafen,
GregAsche, Gregbard, GroveGuy, Gurch, Gurt Posh, Gwalla, Gwen Gale, Gwernol, Haakon, Haham hanuka, Hakufu Sonsaku, HalfShadow, HallwayGiant, Ham Pastrami, Hans Adler, Hatredto,
Headbomb, Helix84, HexenX, Honza Záruba, Hrishikesh0111, II MusLiM HyBRiD II, Iamunknown, Includeiostream, Incnis Mrsi, Infaredz, Infinity0, Insanephantom, Interiot,
InverseHypercube, Iridescence, Iridescent, Ishan.beckham, J.delanoy, JForget, JNW, JSR, JaGa, Jaan513, Jackfork, Jacob grace, Jacob.jose, Jafet, Jagged 85, JamesBWatson, Jaq2013, Jarek
Duda, Jasper Deng, Jdk42, Jeffreyarcand, JesseW, JiFish, Jim.belk, Jimpaz, Jiri 1984, Jmabel, Joel B. Lewis, JoeliusCeasar, Jogers, Johnsmitzerhoven, Jon Awbrey, Jonatan Lindstrom, Jonathan
de Boyne Pollard, Jonik, Jorgepblank, Josh Parris, Jshadias, Jstew87, Juliancolton, Junglecat, Jusdafax, Justin W Smith, Jwoodger, Kappa, Karl Palmen, Katalaveno, Kbdank71, Kbh3rd, Kbrose,
Keka, Kevinalewis, Kim Bruning, Kingo1234, Kingpin13, Kirill Lokshin, KnowledgeOfSelf, Kotra, Krackpipe, Kraftlos, Krishnaupas, Kubigula, Kukini, Kuru, Kurykh, LLarson, Lambiam,
Legalboard, LiDaobing, Liempt, LightAnkh, Linas, LinkWalker, Linuxwikiuser, Logan, LokiClock, Lost, Luigi30, Lupo, MER-C, Machine Elf 1735, Macjohn2, Majopius, Majorly, Malo,
Maniaque27, Marco Polo, Margin1522, MarkKB, Martarius, Martinap98, Martinman11, Marudubshinki, Mate2code, Math MisterY, MathsIsFun, MatthewMastracci, Mblumber, Mckoch, Meco,
Meekywiki, Mendalus, Meno25, MetroMan4, Mets501, Mhdc2003, Michael Hardy, Michael93555, Michaeldadmum, Midnight Madness, Mike4ty4, Mikeo, Mild Bill Hiccup, Milogardner,
Mipadi, Miquonranger03, Mlpearc, Monty845, Mouse Nightshirt, Mr Stephen, Mr. Stradivarius, MrOllie, MrPrada, Mschlindwein, MuZemike, Mushroom, Myanw, N5iln, Naohiro19, Nedge123,
Nerd272, Netralized, NewEnglandYankee, Newton2, Ninly, Nitomatik, Nivix, Nixdorf, Noe, Noetica, NoobTheShow24, NrDg, Nsaa, Numbo3, Nø, OKeh, Ohconfucius, Ohnoitsjamie, Oleg
Alexandrov, Omegatron, Opelio, Orienomesh-w, Oxfordwang, Patrick0Moran, Patstuart, Paul August, Peace keeper, Pedalist, Perić Željko, Peter 2005, Phantomsteve, Philip Trueman, Piano non
troppo, Pikujs, Pinethicket, Pit, Platypus222, Poccil, Polpolpol4, PoojanWagh, Poopship75, Poor Yorick, Pooresd, Prolog, Przo, Psiphiorg, Psychotic Midget, Purgatory Fubar, Quarl, Quatrinauta,
Queen Spiral, Qwerty112233, R-Joe, R. S. Shaw, R00m c, RHaworth, RJASE1, RJGray, RJaguar3, Raf1qu3, Rama, Ravi12346, Reach Out to the Truth, Regancy42, Reno171, Retired username,
RexNL, Rfl, Rjanag, Rjd0060, Rjwilmsi, Rl, Rlevse, Rob Hooft, Robert K S, RobertG, Rohanpol, Rorro, RoyBoy, Rsm99833, Ruhrfisch, SCZenz, SEWilco, SQGibbon, SWAdair, Samadam,
Sandeep Kalshaniya, Sandor rawks, Sango123, Scarian, Scohoust, Scottcraig, Scottywong, Shadowjams, Shanes, Shanken, Shenme, Siddhant, Sigma 7, SimonArlott, SimonP, Sir Nicholas de
Mimsy-Porpington, Sjakkalle, Slakr, Smith14333, Smyth, Snehalbhai, Snoyes, SohanDsouza, Someguy1221, Sopoforic, Sorisos, Sorw, Soupystar, SpAwNaGeZ, SpacePirate59, Spangineer,
Speuler, Spinningspark, Spug, SpuriousQ, Ssassddd, Stwalkerster, Sue Rangell, Suisui, Supaari, Superfrowny, Superiority, Superm401, Supertouch, Sweet xx, Syntaxerrorz, THEN WHO WAS
PHONE?, TakuyaMurata, Tanweer Morshed, Tasc, Techbeats123, Technical math, The Illusive Man, The PIPE, The Rambling Man, The Thing That Should Not Be, The demiurge, The sunder
king, The undertow, TheWeakWilled, Thecheesykid, Thelazyleo, Tiddly Tom, Tide rolls, Tintenfischlein, Titoxd, Tobby72, Tobias Bergemann, Tom harrison, Tombomp, Tomislavlac, Tomtad,
Travelbird, TrippingTroubadour, Trovatore, Trurle, Twaz, Twsx, Ubergeekguy, UncleDouggie, Uquiffquiff, Utcursch, Vadmium, Valhalla, Vanished user x10, Velvetron, Vgy7ujm, Violetriga,
Violinbecky76543, Vipinhari, Viznut, VoidLurker, Vwollan, WODUP, WadeSimMiser, Wapcaplet, Waterbender kara, WatermelonPotion, Wavelength, Wayne Slam, Wayward, Wernher,
Westnest, WikiLaurent, Wikipop, Willking1979, WimdeValk, Winchelsea, Wipeoutman, WoollyMind, Wyzzard, Wzwz, Xander756, Yansa, Yayay, Yegorm, Z1nk666, Zac439, Zackfox,
ZeroOne, Zinc2005, Zippokovich, Zundark, Zvn, کاشف عقیل ,ساجد امجد ساجد, सुभाष राऊत, 1600 anonymous edits

Image Sources, Licenses and Contributors 72

Image Sources, Licenses and Contributors
Image:Binary clock.svg Source: http://en.wikipedia.org/w/index.php?title=File:Binary_clock.svg License: Creative Commons Attribution-ShareAlike 3.0 Unported Contributors: Alexander
Jones & Eric Pierce
Image:Reflected binary Gray 2632058.png Source: http://en.wikipedia.org/w/index.php?title=File:Reflected_binary_Gray_2632058.png License: Public Domain Contributors: Frank Gray
Image:US02632058 Gray.png Source: http://en.wikipedia.org/w/index.php?title=File:US02632058_Gray.png License: Public Domain Contributors: Original uploader was Dicklyon at
en.wikipedia
Image:Encoder Disc (3-Bit).svg Source: http://en.wikipedia.org/w/index.php?title=File:Encoder_Disc_(3-Bit).svg License: Public Domain Contributors: jjbeard
File:Gray code rotary encoder 13-track opened.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Gray_code_rotary_encoder_13-track_opened.jpg License: Public Domain
 Contributors: Mike1024
File:Binary-reflected Gray code construction.svg Source: http://en.wikipedia.org/w/index.php?title=File:Binary-reflected_Gray_code_construction.svg License: Public Domain Contributors:
Inductiveload
File:Gray code permutation matrix 16.svg Source: http://en.wikipedia.org/w/index.php?title=File:Gray_code_permutation_matrix_16.svg License: Public Domain Contributors: Mate2code
Image:Enkelspoors-Graycode.svg Source: http://en.wikipedia.org/w/index.php?title=File:Enkelspoors-Graycode.svg License: Creative Commons Attribution-Sharealike 2.5 Contributors:
Gerbrant
Image:Bruce Martin hexadecimal notation proposal.png Source: http://en.wikipedia.org/w/index.php?title=File:Bruce_Martin_hexadecimal_notation_proposal.png License: Attribution
 Contributors: Bruce A. Martin, Applied Mathematics Department, Brookhaven National Laboratory
File:Hexadecimal-counting.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Hexadecimal-counting.jpg License: Public Domain Contributors: Lipedia
Image:Hexadecimal multiplication table.svg Source: http://en.wikipedia.org/w/index.php?title=File:Hexadecimal_multiplication_table.svg License: Public Domain Contributors: Bernard
Ladenthin
File:Bagua-name-earlier.svg Source: http://en.wikipedia.org/w/index.php?title=File:Bagua-name-earlier.svg License: Creative Commons Attribution-ShareAlike 3.0 Unported Contributors:
Pakua_with_name.svg: 2006-09-23T21:16:47Z BenduKiwi 547x547 (101558 Bytes) derivative work: Machine Elf 1735 (talk)
File:Carus-p48-Mystic-table.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Carus-p48-Mystic-table.jpg License: Public Domain Contributors: An unknown Tibetan artist
File:Gottfried Wilhelm von Leibniz.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Gottfried_Wilhelm_von_Leibniz.jpg License: Public Domain Contributors: AndreasPraefcke,
Auntof6, Beria, Beyond My Ken, Boo-Boo Baroo, Cirt, Davidlud, Ecummenic, Eusebius, Factumquintus, FalconL, Gabor, Luestling, Mattes, Schaengel89, Shakko, Svencb, Tomisti, 5
anonymous edits
Image:Half Adder.svg Source: http://en.wikipedia.org/w/index.php?title=File:Half_Adder.svg License: Public Domain Contributors: inductiveload

License 73

License
Creative Commons Attribution-Share Alike 3.0 Unported
//creativecommons.org/licenses/by-sa/3.0/

