
Day04 A

Young W. Lim

2017-10-07 Sat

Young W. Lim Day04 A 2017-10-07 Sat 1 / 18



Outline

1 Based on

2 Structured Programming (1)
Algorithms and Flowcharts
Examples

Young W. Lim Day04 A 2017-10-07 Sat 2 / 18



Based on

"C How to Program",
Paul Deitel and Harvey Deitel

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Day04 A 2017-10-07 Sat 3 / 18



Algorithms

execution of a series of actions in a specific order
a procedure for solving problem in terms of
the actions to be executed, and
the order in which these actions are to be executed

pseudocode
artificial and informal language
not an actual programming language
helps you to think out a program
consists of only action statements not definitions

Young W. Lim Day04 A 2017-10-07 Sat 4 / 18



Control Structures

sequential execution: statements are executed one after the other in
the given order
transfer of control : out of this "one after the other" sequence
can execute a statement that is not the next following statement
goto statement used in the early ages
difficult to manage (spaghetti codes)
three control structures

sequence control structure : one after the other execution
selection control structure : if, if ... else statements
repetition control structure : while, do ... while, for

Young W. Lim Day04 A 2017-10-07 Sat 5 / 18



Flow Charts

rectangle : action symbols (calculation, input, output)
rounded rectangles : Begin, End
small circles : connecting symbols
diamonds : decision symbols
flowlines : the order of the actions

structured programming and flowcharts
stacked building blocks
flowchart segments can be attached to one another
connect the exit of one segment to the entry of the other
nested building blocks
any rectangle can be replaced by any control statement

Young W. Lim Day04 A 2017-10-07 Sat 6 / 18



Selection Control Structures

single selection statment if
either performs/selects an action if a condition is met
or skips/ignores the action if the codition is false

double selection statement if ... else
either performs/selects an action if a condition is met
or performs/selects the other action if the codition is false

multiple selection statement switch
performs/selects one of many different actions depending on the value
of the expression

Young W. Lim Day04 A 2017-10-07 Sat 7 / 18



Repetion Control Structures

repetition / iteration / loop statement
C provides : (a) while (b) do ... while (c) for
counter controlled repetition
definite repetition : the number of repetition is known in advance
sentinel controlled repetition
indefinite repetition : the number of repetition is not know in advance
control variable : incremented / decremented each time
sentinel value : denotes the end of data
regular data and the end of data (sentinel value)

Young W. Lim Day04 A 2017-10-07 Sat 8 / 18



Examples (1)

#include <stdio.h>

int main(void) {
int S;

S = 1+2+3+4+5;

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

not useful when the numbers are
many.

Young W. Lim Day04 A 2017-10-07 Sat 9 / 18



Examples (2)

#include <stdio.h>

int main(void) {
int S;

S = (((((1)+2)+3)+4)+5);

S = 0;
S = S + 1; // S = 1;
S = S + 2; // S = (1) + 2
S = S + 3; // S = ((1)+2) + 3
S = S + 4; // S = (((1)+2)+3) + 4
S = S + 5; // S = ((((1)+2)+3+4) + 5

printf("S= %d \n", S);
}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

accumuation variable S
add one number at a time
can think in this way
S = S + i, (i=1, ..., 5)

then we have the same
statement S = S+i

Young W. Lim Day04 A 2017-10-07 Sat 10 / 18



Examples (3)

#include <stdio.h>

int main(void) {
int i, S;

i = 0; S = 0;
i = i+1; S = S + i;
i = i+1; S = S + i;
i = i+1; S = S + i;
i = i+1; S = S + i;
i = i+1; S = S + i;

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

accumulation variable S

loop variable i

increment i by 1
to make (i=1, 2, 3, 4, 5)

the same statements are
repeated 5 times
i can start from 1, also.

Young W. Lim Day04 A 2017-10-07 Sat 11 / 18



Examples (4)

#include <stdio.h>

int main(void) {
int i, S;

S = 0; i = 1;
S = S + i; i = i+1;
S = S + i; i = i+1;
S = S + i; i = i+1;
S = S + i; i = i+1;
S = S + i; i = i+1;

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

if i starts from 1, then i = i+1
statement must used after
S = S + i

Note that
alogrithm = actions + orders

Now, let’s use the if statement

Young W. Lim Day04 A 2017-10-07 Sat 12 / 18



Examples (5)

#include <stdio.h>

int main(void) {
int i, S;

i = 0; S = 0;
if (i<5) { i = i+1; S = S + i; }
if (i<5) { i = i+1; S = S + i; }
if (i<5) { i = i+1; S = S + i; }
if (i<5) { i = i+1; S = S + i; }
if (i<5) { i = i+1; S = S + i; }

if (i<5) { i = i+1; S = S + i; }
if (i<5) { i = i+1; S = S + i; }
printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

as long as the condition is met,
the same statement is executed
the first 5 statements are
executed
the last 2 statements are not
executed because the condition
is not met.

Young W. Lim Day04 A 2017-10-07 Sat 13 / 18



Examples (6)

#include <stdio.h>

int main(void) {
int i, S;

S = 0; i = 1;
if (i<=5) { S = S + i; i = i+1; }
if (i<=5) { S = S + i; i = i+1; }
if (i<=5) { S = S + i; i = i+1; }
if (i<=5) { S = S + i; i = i+1; }
if (i<=5) { S = S + i; i = i+1; }

if (i<=5) { S = S + i; i = i+1; }
if (i<=5) { S = S + i; i = i+1; }

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

note the condition when i starts
from 1
Now, we can use the while
statement

Young W. Lim Day04 A 2017-10-07 Sat 14 / 18



Examples (7)

#include <stdio.h>

int main(void) {
int i, S;

i = 0; S = 0;
while (i<5) { i = i+1; S = S + i; }

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

i starts from 0
as long as the condition (i<5) is
met
the same statements are
executed

increments i by 1
accumulates S by adding i

after 5 repeatitions, i becomes 5
the condition does not be met
no more repeatition, escape,
exit, break

Young W. Lim Day04 A 2017-10-07 Sat 15 / 18



Examples (8)

#include <stdio.h>

int main(void) {
int i, S;

S = 0; i = 1;
while (i<=5) { S = S + i; i = i+1; }

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

i starts from 1
as long as the condition (i<=5)
is met
the same statements are
executed

accumulates S by adding i
increments i by 1

after 5 repeatitions, i becomes 6
the condition does not be met
no more repeatition, escape,
exit, break

Young W. Lim Day04 A 2017-10-07 Sat 16 / 18



Examples (9)

#include <stdio.h>

int main(void) {
int i=0, S=0;

while (i<5) {
i = i + 1;
S = S + i;

}

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

Young W. Lim Day04 A 2017-10-07 Sat 17 / 18



Examples (10)

#include <stdio.h>

int main(void) {
int i=0, S=0;

while (i<6) {
S = S + i;
i = i + 1;

}

printf("S= %d \n", S);

}

---
$ gcc -Wall t.c
$ ./a.out
S= 15

Young W. Lim Day04 A 2017-10-07 Sat 18 / 18


	Based on
	Structured Programming (1)
	Algorithms and Flowcharts
	Examples


