
1 Young Won Lim
11/2/22

Lambda Calculus - Formal description (1A)

2 Young Won Lim
11/2/22

 Copyright (c) 2022 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Lambda Calculus (2A) -
Formal description

3 Young Won Lim
11/2/22

Lambda expressions are composed of:

 variables v1, v2, ...;

 the abstraction symbols λ (lambda) and . (dot);

 parentheses ().

The set of lambda expressions, Λ, can be defined inductively:

 If x is a variable, then x Λ.∈
 If x is a variable and M Λ, then ∈ (λx.M) Λ.∈
 If M, N Λ, then∈ (M N) Λ.∈

instances of rule 2 are known as abstractions (λx.M)

instances of rule 3 are known as applications (M N)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Definition

Lambda Calculus (2A) -
Formal description

4 Young Won Lim
11/2/22

The abstraction operator, λ, is said to bind its variable

wherever it occurs in the body of the abstraction.

Variables that fall within the scope of an abstraction

are said to be bound.

In an expression λx.M,

the part λx is often called binder,

as a hint that the variable x is getting bound

by appending λx to M.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Free and bound variables (1)

Lambda Calculus (2A) -
Formal description

5 Young Won Lim
11/2/22

All other variables (unbound) are called free.

For example, in the expression λy.x x y,

y is a bound variable and

x is a free variable.

Also a variable is bound by its nearest abstraction.

In λx.y (λx.z x), the single occurrence of x in the expression

is bound by the second lambda: .

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Free and bound variables (3)

Lambda Calculus (2A) -
Formal description

6 Young Won Lim
11/2/22

The set of free variables FV(M) of a lambda expression M,

is defined by recursion on the structure of the terms, as follows:

 FV(x) = {x}, where x is a variable

 FV(λx.M) = FV(M) \ {x} x is a bound variable

 FV(M N) = FV(M) FV(N)∪

An expression that contains no free variables is said to be closed.

Closed lambda expressions are also known as combinators

and are equivalent to terms in combinatory logic.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Free and bound variables (4)

Lambda Calculus (2A) -
Formal description

7 Young Won Lim
11/2/22

The meaning of lambda expressions is defined

by how expressions can be reduced.[21]

There are three kinds of reduction:

 α-conversion: changing bound variables;

 β-reduction: applying functions to their arguments;

 η-reduction: which captures a notion of extensionality.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction (1)

Lambda Calculus (2A) -
Formal description

8 Young Won Lim
11/2/22

two expressions are

α-equivalent,

if they can be α-converted into the same expression.

β-equivalent,

if they can be β-converted into the same expression.

η-equivalent,

if they can be η-converted into the same expression.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction (2)

Lambda Calculus (2A) -
Formal description

9 Young Won Lim
11/2/22

The term redex (reducible expression),

refers to subterms that can be reduced by one of the reduction rules.

For example, (λx.M) N is a β-redex

in expressing the substitution of N for x in M.

The expression to which a redex reduces

is called its reduct; the reduct of (λx.M) N is M[x := N].

If x is not free in M, λx.M x is also an η-redex, with a reduct of M.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction (5)

Lambda Calculus (2A) -
Formal description

10 Young Won Lim
11/2/22

α-conversion (α-renaming)

allows bound variable names to be changed.

For example, α-conversion of λx.x might yield λy.y.

terms that differ only by α-conversion are called α-equivalent.

Frequently, in uses of lambda calculus,

α-equivalent terms are considered to be equivalent.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (1)

Lambda Calculus (2A) -
Formal description

11 Young Won Lim
11/2/22

The precise rules for α-conversion are not completely trivial.

First, when α-converting an abstraction,

the only variable occurrences that are renamed

are those that are bound to the same abstraction.

For example, an α-conversion of λx.λx.x could result in λy.λx.x,

but it could not result in λy.λx.y.

The latter has a different meaning from the original.

This is analogous to the programming notion of variable shadowing.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (2)

Lambda Calculus (2A) -
Formal description

12 Young Won Lim
11/2/22

Second, α-conversion is not possible

if it would result in a variable getting captured by a different abstraction.

For example, if we replace x with y in λx.λy.x,

we get λy.λy.y, which is not at all the same.

In programming languages with static scope,

α-conversion can be used to make name resolution simpler

by ensuring that no variable name masks a name

in a containing scope

(see α-renaming to make name resolution trivial).

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (3)

Lambda Calculus (2A) -
Formal description

13 Young Won Lim
11/2/22

In the De Bruijn index notation,

any two α-equivalent terms are syntactically identical.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (4)

Lambda Calculus (2A) -
Formal description

14 Young Won Lim
11/2/22

Substitution, written M[V := N],

is the process of replacing all free occurrences

of the variable V in the expression M with expression N.

Substitution on terms of the lambda calculus

is defined by recursion on the structure of terms,

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Substitution (1)

Lambda Calculus (2A) -
Formal description

15 Young Won Lim
11/2/22

note: x and y are only variables

while M and N are any lambda expression

 x[x := N] = N

 y[x := N] = y, if x ≠ y

 (M1 M2)[x := N] = M1[x := N] M2[x := N]

 (λx.M)[x := N] = λx.M

 (λy.M)[x := N] = λy.(M[x := N]), if x ≠ y and y FV(∉ N)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Substitution (1’)

Lambda Calculus (2A) -
Formal description

16 Young Won Lim
11/2/22

To substitute into an abstraction,

it is sometimes necessary to α-convert the expression.

For example, it is not correct for (λx.y)[y := x] to result in λx.x,

because the substituted x was supposed to be free

but ended up being bound.

 (λy.M)[x := N] = λy.(M[x := N]), if x ≠ y and y FV(∉ N)

The correct substitution in this case is λz.x, up to α-equivalence.

Substitution is defined uniquely up to α-equivalence.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Substitution (2)

Lambda Calculus (2A) -
Formal description

17 Young Won Lim
11/2/22

β-reduction captures the idea of function application.

β-reduction is defined in terms of substitution:

the β-reduction of (λV.M) N is M[V := N].

For example, assuming some encoding of 2, 7, ×,

we have the following β-reduction: (λn.n × 2) 7 → 7 × 2.

β-reduction can be seen to be the same

as the concept of local reducibility in natural deduction,

via the Curry–Howard isomorphism.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

β-reduction

Lambda Calculus (2A) -
Formal description

18 Young Won Lim
11/2/22

η-reduction expresses the idea of extensionality,

which in this context is that two functions are the same

if and only if they give the same result for all arguments.

η-reduction converts between λx.f x and f

whenever x does not appear free in f.

η-reduction can be seen to be the same as

the concept of local completeness in natural deduction,

via the Curry–Howard isomorphism.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

η-reduction

Lambda Calculus (2A) -
Formal description

19 Young Won Lim
11/2/22

For the untyped lambda calculus,

β-reduction as a rewriting rule is

neither strongly normalising

nor weakly normalising.

However, it can be shown that β-reduction is confluent

when working up to α-conversion

(i.e. we consider two normal forms to be equal

if it is possible to α-convert one into the other).

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Normal form and confluence (1)

Lambda Calculus (2A) -
Formal description

20 Young Won Lim
11/2/22

Therefore, both strongly normalising terms

and weakly normalising terms have a unique normal form.

For strongly normalising terms,

any reduction strategy is guaranteed to yield the normal form,

whereas for weakly normalising terms,

some reduction strategies may fail to find the normal form.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Normal form and confluence (2)

Lambda Calculus (2A) -
Formal description

21 Young Won Lim
11/2/22

Whether a term is normalising or not,

and how much work needs to be done in normalising it if it is,

depends to a large extent on the reduction strategy used.

Common reduction strategies include:

● Normal order

● Applicative order

● Full β-reductions

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (1)

Lambda Calculus (2A) -
Formal description

22 Young Won Lim
11/2/22

Common reduction strategies include:

● Normal order

 The leftmost, outermost redex is always reduced first.

That is, whenever possible the arguments are

substituted into the body of an abstraction

before the arguments are reduced.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (2)

Lambda Calculus (2A) -
Formal description

23 Young Won Lim
11/2/22

Common reduction strategies include:

● Applicative order

 The leftmost, innermost redex is always reduced first.

Intuitively this means a function's arguments

are always reduced before the function itself.

Applicative order always attempts to apply functions

to normal forms, even when this is not possible.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (3)

Lambda Calculus (2A) -
Formal description

24 Young Won Lim
11/2/22

Common reduction strategies include:

● Full β-reductions

 Any redex can be reduced at any time.

This means essentially the lack of

any particular reduction strategy

— with regard to reducibility, "all bets are off".

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (4)

Lambda Calculus (2A) -
Formal description

25 Young Won Lim
11/2/22

Weak reduction strategies do not reduce under lambda abstractions:

● Call by value

● Call by name

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (5)

Lambda Calculus (2A) -
Formal description

26 Young Won Lim
11/2/22

Weak reduction strategies do not reduce under lambda abstractions:

● Call by value

 A redex is reduced only when its right hand side

has reduced to a value (variable or abstraction).

Only the outermost redexes are reduced.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (6)

Lambda Calculus (2A) -
Formal description

27 Young Won Lim
11/2/22

Weak reduction strategies do not reduce under lambda abstractions:

● Call by name

 As normal order, but no reductions

are performed inside abstractions.

For example, λx.(λy.y)x is in normal form

according to this strategy, although it contains the redex (λy.y)x.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (7)

Lambda Calculus (2A) -
Formal description

28 Young Won Lim
11/2/22

Strategies with sharing reduce computations

 that are "the same" in parallel:

● Optimal reduction

● Call by need

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (8)

Lambda Calculus (2A) -
Formal description

29 Young Won Lim
11/2/22

Strategies with sharing reduce computations

 that are "the same" in parallel:

● Optimal reduction

 As normal order, but computations

that have the same label are reduced simultaneously.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (9)

Lambda Calculus (2A) -
Formal description

30 Young Won Lim
11/2/22

Strategies with sharing reduce computations

 that are "the same" in parallel:

● Call by need

 As call by name (hence weak), but function applications

that would duplicate terms instead name the argument,

which is then reduced only "when it is needed".

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (10)

Lambda Calculus (2A) -
Formal description

31 Young Won Lim
11/2/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

