Lambda Calculus - Formal description (1A)

Copyright (c) 2022 - 2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Definition

```
Lambda expressions are composed of:
```

```
variables v1, v2, ...; the abstraction symbols \lambda (lambda) and . (dot); parentheses ().
```

The <u>set</u> of lambda expressions, Λ , can be defined <u>inductively</u>:

```
If x is a variable, then \underline{x} \in \Lambda.

If x is a variable and M \in \Lambda, then (\lambda x.M) \in \Lambda.

If M, N \in \Lambda, then (M N) \in \Lambda.
```

instances of rule 2 are known as abstractions (\(\lambda x.M\right)\)

instances of rule 3 are known as applications (M N)

Free and bound variables (1)

The abstraction operator, λ , is said to <u>bind</u> its variable wherever it occurs in the **body** of the abstraction.

Variables that fall within the scope of an abstraction are said to be bound.

In an expression $\lambda x.M$, the part λx is often called binder, as a hint that the **variable** x is getting bound by appending λx to M.

Free and bound variables (3)

All other variables (unbound) are called free.

For example, in the expression $\lambda y.x x y$,

y is a bound variable and

x is a free variable.

Also a **variable** is bound by its *nearest* **abstraction**.

In $\lambda x.y$ ($\lambda x.z$ x), the single occurrence of x in the expression is bound by the second lambda: .

Free and bound variables (4)

The <u>set</u> of **free variables FV(M)** of a **lambda expression M**, is defined by <u>recursion</u> on the structure of the **terms**, as follows:

```
FV(x) = {x}, where x is a variable

FV(\lambdax.M) = FV(M) \ {x} x is a bound variable

FV(M N) = FV(M) \cup FV(N)
```

An **expression** that contains <u>no</u> **free variables** is said to be *closed*.

Closed lambda expressions are also known as combinators and are <u>equivalent</u> to terms in combinatory logic.

Reduction (1)

The meaning of **lambda expressions** is defined by <u>how</u> **expressions** can be reduced.[21]

There are three kinds of **reduction**:

α-conversion: <u>changing</u> bound variables;

β-reduction: applying functions to their arguments;

η-reduction: which captures a notion of extensionality.

Reduction (2)

two expressions are

α-equivalent,

if they can be α -converted into the same expression.

β-equivalent,

if they can be β -converted into the same expression.

η-equivalent,

if they can be η -converted into the same expression.

Reduction (5)

The term **redex** (**reducible expression**), refers to subterms that can be reduced by one of the reduction rules.

For example, $(\lambda x.M)$ N is a β -redex in expressing the substitution of N for x in M.

The expression to which a redex reduces is called its reduct; the reduct of $(\lambda x.M)$ N is M[x := N].

If x is <u>not</u> free in M, $\lambda x.M$ x is also an η -redex, with a reduct of M.

α-conversion (1)

 α -conversion (α -renaming)

allows **bound variable** names to be <u>changed</u>.

For example, α -conversion of $\lambda x.x$ might yield $\lambda y.y$.

terms that differ only by α -conversion are called α -equivalent.

Frequently, in uses of **lambda calculus**, α -equivalent **terms** are considered to be equivalent.

α-conversion (2)

The precise rules for α -conversion are <u>not completely trivial</u>.

First, when α -converting an **abstraction**, the only **variable occurrences** that are <u>renamed</u> are those that are <u>bound</u> to <u>the same</u> **abstraction**.

For example, an α -conversion of $\lambda x.\lambda x.x$ could result in $\lambda y.\lambda x.x$, but it could <u>not</u> result in $\lambda y.\lambda x.y$.

The latter has a <u>different</u> meaning from the original.

This is analogous to the programming notion of variable shadowing.

α-conversion (3)

Second, **α-conversion** is <u>not possible</u> if it would result in a **variable** getting <u>captured</u> by a <u>different</u> **abstraction**.

For example, if we replace x with y in $\lambda x.\lambda y.x$, we get $\lambda y.\lambda y.y$, which is not at all the same.

In programming languages with **static scope**, α -conversion can be used to make **name resolution** <u>simpler</u> by ensuring that <u>no</u> **variable name** <u>masks</u> a **name** in a **containing scope** (see α -renaming to make **name resolution** <u>trivial</u>).

α-conversion (4)

In the **De Bruijn index notation**,

any two α -equivalent terms are syntactically identical.

Substitution (1)

Substitution, written M[V := N],

is the process of replacing all **free occurrences** of the **variable V** in the **expression M** with **expression N**.

Substitution on **terms** of the **lambda calculus** is defined by <u>recursion</u> on the <u>structure</u> of **terms**,

Substitution (1')

```
note: x and y are only variables
while M and N are any lambda expression
x[x := N] = Ny[x := N] = y, \text{ if } x \neq y(M1 M2)[x := N] = M1[x := N] M2[x := N](\lambda x.M)[x := N] = \lambda x.M(\lambda y.M)[x := N] = \lambda y.(M[x := N]), \text{ if } x \neq y \text{ and } y \notin FV(N)
```

Substitution (2)

To <u>substitute</u> into an **abstraction**, it is sometimes <u>necessary</u> to α -convert the **expression**.

For example, it is <u>not correct</u> for $(\lambda x.y)[y := x]$ to result in $\lambda x.x$, because the <u>substituted</u> x was supposed to be free but ended up being bound.

$$(\lambda y.M)[x := N]$$
 = $\lambda y.(M[x := N])$, if $x \neq y$ and $y \notin FV(N)$

The correct substitution in this case is $\lambda z.x$, up to α -equivalence.

Substitution is defined uniquely up to α -equivalence.

β-reduction

```
β-reduction captures the idea of function application.
```

β-reduction is defined in terms of **substitution**: the β-reduction of $(\lambda V.M)$ N is M[V := N].

For example, assuming some encoding of 2, 7, \times , we have the following β -reduction: $(\lambda n.n \times 2)$ 7 \rightarrow 7 \times 2.

β-reduction can be seen to be the same as the concept of **local reducibility** in **natural deduction**, via the **Curry–Howard isomorphism**.

η-reduction

η-reduction expresses the idea of extensionality, which in this context is that two functions are the same if and only if they give the same result for all arguments.

 η -reduction converts between $\lambda x.f$ x and f whenever x does <u>not</u> appear free in f.

η-reduction can be seen to be the same as the concept of local completeness in natural deduction, via the Curry–Howard isomorphism.

Normal form and confluence (1)

For the <u>untyped</u> lambda calculus, **β-reduction** as a rewriting rule is <u>neither</u> strongly normalising <u>nor</u> weakly normalising.

However, it can be shown that β -reduction is confluent when working up to α -conversion (i.e. we consider two normal forms to be equal if it is possible to α -convert one into the other).

Normal form and confluence (2)

Therefore, <u>both</u> strongly normalising terms <u>and</u> weakly normalising terms have a <u>unique</u> normal form.

For strongly normalising terms, any reduction strategy is <u>guaranteed</u> to yield the normal form,

whereas for weakly normalising terms,
some reduction strategies may fail to find the normal form.

Reduction strategies (1)

Whether a term is normalising or not, and how much work needs to be done in normalising it if it is, depends to a large extent on the reduction strategy used.

Common reduction strategies include:

- Normal order
- Applicative order
- Full β-reductions

Reduction strategies (2)

Common reduction strategies include:

Normal order

The leftmost, outermost **redex** is always reduced <u>first</u>. That is, whenever possible the **arguments** are <u>substituted</u> into the **body** of an **abstraction** <u>before</u> the **arguments** are <u>reduced</u>.

Reduction strategies (3)

Common reduction strategies include:

Applicative order

The leftmost, innermost redex is always reduced <u>first</u>.

Intuitively this means a function's **arguments**are always reduced <u>before</u> the **function** itself.

Applicative order always attempts to <u>apply</u> **functions** to **normal forms**, even when this is <u>not</u> possible.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Young Won Lim

11/2/22

Reduction strategies (4)

Common reduction strategies include:

• Full β-reductions

Any **redex** can be <u>reduced</u> at any time.

This means essentially the \underline{lack} of

any particular reduction strategy

— with regard to reducibility, "all bets are off".

Reduction strategies (5)

Weak reduction strategies do <u>not</u> reduce under lambda abstractions:

- Call by value
- Call by name

Reduction strategies (6)

Weak reduction strategies do <u>not</u> reduce under lambda abstractions:

Call by value

A **redex** is <u>reduced</u> only <u>when</u> its right hand side has <u>reduced</u> to a **value** (**variable** or **abstraction**).

Only the outermost **redexes** are reduced.

Reduction strategies (7)

Weak reduction strategies do <u>not</u> reduce under lambda abstractions:

Call by name

As normal order, but <u>no reductions</u> are performed inside **abstractions**. For example, $\lambda x.(\lambda y.y)x$ is in normal form according to this strategy, although it contains the **redex** $(\lambda y.y)x$.

Reduction strategies (8)

Strategies with sharing <u>reduce computations</u> that are "the same" in parallel:

- Optimal reduction
- Call by need

Reduction strategies (9)

Strategies with sharing <u>reduce computations</u> that are "the same" in parallel:

Optimal reduction

As normal order, but computations that have the same label are reduced <u>simultaneously</u>.

Reduction strategies (10)

Strategies with sharing <u>reduce computations</u> that are "the same" in parallel:

Call by need

As call by name (hence weak), but **function applications** that would **duplicate terms** instead name the **argument**, which is then reduced <u>only</u> "when it is <u>needed</u>".

References

- [1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
- [2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf