
1 Young Won Lim
9/5/22

Lambda Calculus (4A) – Normal forms

2 Young Won Lim
9/5/22

 Copyright (c) 2022 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Lambda Calculus (4A) –
Normal forms

3 Young Won Lim
9/5/22

The expression (λx.x x)(λx.x x) does not have a normal form

because it always evaluates to itself.

(λx.x x)(λx.x x)

(λx.x x) (λx.x x)

We can think of this expression

as a representation for an infinite loop.

The expression (λx. λy. y)((λz.z z)(λz.z z))

can be reduced to the normal form λy.y.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Normal Form (2)

(λx. λy. y)((λz.z z)(λz.z z))

Lambda Calculus (4A) –
Normal forms

4 Young Won Lim
9/5/22

Q: If a lambda expression does have a normal form, do all choices of reduction sequences get

there?

A: No. Consider the following lambda expression:

 (λx.λy.y)((λz.zz)(λz.zz))

This lambda expression contains two redexes: the first is the whole expression (the application of

(λx.λy.y) to its argument); the second is the argument itself: ((λz.zz)(λz.zz)). The second redex is

the one we used above to illustrate a lambda expression with no normal form; each time you

beta-reduce it, you get the same expression back. Clearly, if we keep choosing that redex to

reduce we're never going to find a normal form for the whole expression. However, if we reduce

the first redex we get: λy.y, which is in normal form. Therefore, the sequence of choices that we

make can determine whether or not we get to a normal form.

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html

Normal Form (2)

(λx. λy. y)((λz.z z)(λz.z z))

Lambda Calculus (4A) –
Normal forms

5 Young Won Lim
9/5/22

(Church-Rosser Theorem)

Suppose an expression A can be reduced

by a sequence of reductions to an expression B,

and it can be reduced by another sequence of reductions

to another expression C.

Then there exists some expression D

that can be reached from a sequence of reductions from B

and also from a sequence of reductions from C.

http://www.cburch.com/books/lambda/

Normal Form (3)

A

B

CD

Lambda Calculus (4A) –
Normal forms

6 Young Won Lim
9/5/22

Essentially, this theorem says that

no reduction will ever be a wrong turn.

As long as we can find a reduction to perform,

then it will still be possible to reach

whatever destination somebody else can find.

http://www.cburch.com/books/lambda/

Normal Form (4)

Lambda Calculus (4A) –
Normal forms

7 Young Won Lim
9/5/22

We call an expression irreducible

if there are no reductions

that can be performed on the expressions,

such as 1 or λx.x or λf.f (λy.y),

but not (λy.y) f, which can be reduced to f.

An irreducible expression is sometimes

said to be in normal form.

Not counting α-reductions as reductions here

http://www.cburch.com/books/lambda/

Normal Form (5)

Lambda Calculus (4A) –
Normal forms

8 Young Won Lim
9/5/22

Not all expressions can be reduced to irreducible form.

One of the simplest is (λx.x x) (λx.x x)

An application of beta-reduction to (λx.x x) (λx.x x)

simply returns us to the same expression we already have.

Even worse is the expression

(λx.x x x) (λx.x x x),

which will get longer each time we try to reduce it.

http://www.cburch.com/books/lambda/

Normal Form (7)

Lambda Calculus (4A) –
Normal forms

9 Young Won Lim
9/5/22

http://www.cburch.com/books/lambda/

Normal Form (8)

A

CB

D

The Church-Rosser Theorem implies

that there cannot be two different

irreducible forms of an expression.

After all, if A could be reduced to two distinct

irreducible forms, B and C,

then the theorem says we would be able

to reduce both B and C,

and so they are actually not irreducible.

Contradiction!

Lambda Calculus (4A) –
Normal forms

10 Young Won Lim
9/5/22

A natural question to ask is: Is there a technique for always reaching irreducible form when it

exists? One important evaluation order is eager evaluation (or sometimes applicative order of

evaluation or strict evaluation), in which an argument is always reduced before it is applied to a

function. This is the ordering used in most programming languages, where we evaluate the value

of an argument before passing it into a function.

(λx.x + 1) ((λy.2 × y) 3) ⇒ (λx.x + 1) (2 × 3) (λx.x + 1) 6⇒
 ⇒ 6 + 1 7⇒

http://www.cburch.com/books/lambda/

Normal Form (9)

Lambda Calculus (4A) –
Normal forms

11 Young Won Lim
9/5/22

Unfortunately, eager evaluation does not always reach irreducible form when it exists. Consider

the expression

(λx.1) ((λx.x x) (λx.x x)).

Using eager evaluation, we would first try to reduce the argument, but that simply reduces to

itself. (Before trying to reduce (λx.x x) (λx.x x), though, we'd first have to examine the argument,

λx.x x. In this case, though, there are no reductions to perform.) Yet this expression can reduce

to irreducible form, for if we apply the argument to λx.1 immediately, we would reach 1 without

needing to reduce the argument at any time. Eager evaluation, though, would never get us there.

http://www.cburch.com/books/lambda/

Normal Form (10)

Lambda Calculus (4A) –
Normal forms

12 Young Won Lim
9/5/22

Alternatively, lazy evaluation order (sometimes called the normal order of evaluation) has us

always pass an argument into a function unsimplified, only reducing the argument when needed.

(λx.x + 1) ((λy.2 × y) 3) ⇒ ((λy.2 × y) 3) + 1

 ⇒ (2 × 3) + 1 6 + 1 7⇒ ⇒

It turns out, mathematicians have proven that lazy evaluation does guarantee that we reach

irreducible form when possible.

http://www.cburch.com/books/lambda/

Normal Form (11)

Lambda Calculus (4A) –
Normal forms

13 Young Won Lim
9/5/22

If an expression can be reduced to an irreducible expression, then lazy evaluation order will

reach it.

Due to this theorem, this evaluation order is sometimes called normal order (since an irreducible

expression is said to be in normal form).

(Technically, we'll subtly distinguish the terms lazy evaluation and normal evaluation, as

described in Section 2.1.)

http://www.cburch.com/books/lambda/

Normal Form (12)

Lambda Calculus (4A) –
Normal forms

14 Young Won Lim
9/5/22

● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda Calculus (4A) –
Normal forms

15 Young Won Lim
9/5/22

An evaluation strategy specifies the order

in which beta reductions for a lambda expression are made.

Some reduction orders for a lambda expression

may yield a normal form

while other orders may not.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (1)

Lambda Calculus (4A) –
Normal forms

16 Young Won Lim
9/5/22

For example, consider the given expression

 (λx.1)((λx.x x)(λx.x x))

This expression has two redexes:

 The entire expression is a redex

in which we can apply the function (λx.1)

to the argument ((λx.x x)(λx.x x))

to yield the normal form 1.

this redex is the leftmost outermost redex

in the given expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (2)

Lambda Calculus (4A) –
Normal forms

17 Young Won Lim
9/5/22

 The subexpression ((λx.x x)(λx.x x)) is also a redex

in which we can apply the function (λx.x x)

to the argument (λx.x x).

Note that this redex is the leftmost innermost redex

in the given expression.

But if we evaluate this redex we get same subexpression:

(λx.x x)(λx.x x) → (λx.x x)(λx.x x).

Thus, continuing to evaluate the leftmost innermost redex

will not terminate and no normal form will result.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (3)

Lambda Calculus (4A) –
Normal forms

18 Young Won Lim
9/5/22

There are two common reduction orders for lambda expressions:

normal order evaluation and

applicative order evaluation.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (4)

Lambda Calculus (4A) –
Normal forms

19 Young Won Lim
9/5/22

Normal order evaluation

we always reduce the leftmost outermost redex at each step.

 The first reduction order above is a normal order evaluation.

a remarkable property of lambda calculus is

that every lambda expression has a unique normal form

if one exists.

Moreover, if an expression has a normal form,

then normal order evaluation will always find it.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (5)

Lambda Calculus (4A) –
Normal forms

20 Young Won Lim
9/5/22

Applicative order evaluation

 we always reduce the leftmost innermost redex at each step.

The second reduction order above is

an applicative order evaluation.

rhus, even though an expression may have a normal form,

applicative order evaluation may fail to find it.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (6)

Lambda Calculus (4A) –
Normal forms

21 Young Won Lim
9/5/22

Call-by-value:

arguments are evaluated before a function is entered

Call-by-name:

arguments are passed unevaluated

Call-by-need:

arguments are passed unevaluated

but an expression is only evaluated once

and shared upon subsequent references

http://dev.stephendiehl.com/fun/005_evaluation.html

Evaluation models of a function

Lambda Calculus (4A) –
Normal forms

22 Young Won Lim
9/5/22

Call by name is non-memoizing non-strict evaluation strategy

where the value(s) of the argument(s) need only be found

when actually used inside the function's body, each time anew:

Call by need is memoizing non-strict a.k.a. lazy evaluation strategy

where the value(s) of the argument(s) need only be found

when used inside the function's body for the first time,

and then are available for any further reference:

Call by value is strict evaluation strategy

where the value(s) of the argument(s) must be found

before entering the function's body:

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

Lambda Calculus (4A) –
Normal forms

23 Young Won Lim
9/5/22

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

Call by name non-memoizing non-strict

Call by need memoizing non-strict

Call by value strict

Lambda Calculus (4A) –
Normal forms

24 Young Won Lim
9/5/22

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

non-memoizing non-strict Call by name the value(s) of the argument(s) need only be found

when actually used inside the function's body, each time anew:

Call by need the value(s) of the argument(s) need only be found

when used inside the function's body for the first time,

and then are available for any further reference:

Call by value the value(s) of the argument(s) must be found

before entering the function's body:

memoizing non-strict

strict

Lambda Calculus (4A) –
Normal forms

25 Young Won Lim
9/5/22

Memoization is a technique

for storing values of a function

instead of recomputing them

each time the function is called.

Sharing means that temporary data is physically stored,

if it is used multiple times.

https://wiki.haskell.org/Memoization

Memoization / Sharing

Lambda Calculus (4A) –
Normal forms

26 Young Won Lim
9/5/22

Strict evaluation, or eager evaluation, is an evaluation strategy

where expressions are evaluated

as soon as they are bound to a variable.

when x = 3 * 7 is read, 3 * 7 is immediately computed

and 21 is bound to x.

Conversely, with lazy evaluation

values are only computed when they are needed.

In the example x = 3 * 7, 3 * 7 isn't evaluated until it's needed,

like if you needed to output the value of x.

https://en.wikibooks.org/wiki/Haskell/Strictness https://wiki.haskell.org/Sharing

Strictness

https://en.wikibooks.org/wiki/Haskell/Strictness

Lambda Calculus (4A) –
Normal forms

27 Young Won Lim
9/5/22

Haskell is a non-strict language, and most implementations

use a strategy called laziness to run your program.

Basically laziness == non-strictness + sharing.

Laziness can be a useful tool for improving performance,

but more often than not it reduces performance

by adding a constant overhead to everything.

https://wiki.haskell.org/Performance/Strictness

Laziness

Lambda Calculus (4A) –
Normal forms

28 Young Won Lim
9/5/22

Because of laziness, the compiler can't

evaluate a function argument

and pass the value to the function,

it has to record the expression

in the heap in a suspension (or thunk)

in case it is evaluated later.

Storing and evaluating suspensions is costly, and unnecessary

if the expression was going to be evaluated anyway.

https://wiki.haskell.org/Performance/Strictness

Laziness

Lambda Calculus (4A) –
Normal forms

29 Young Won Lim
9/5/22

h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

 = [let {xs = (h 2)} in head xs, let {xs = (h 2)} in head xs - 1]

 = [head (h 2), let {xs = (h 2)} in head xs - 1]

 = [head (let {x = 2} in x : (h x)}), let {xs = (h 2)} in head xs - 1]

 = [let {x = 2} in x, let {xs = (h 2)} in head xs - 1]

 = [2, let {xs = (h 2)} in head xs - 1]

 =

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by name

Lambda Calculus (4A) –
Normal forms

30 Young Won Lim
9/5/22

h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

 = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

 = let {xs = (2 : (h 2))} in [2, head xs - 1]

 =

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by need

Lambda Calculus (4A) –
Normal forms

31 Young Won Lim
9/5/22

h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

 = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

 = let {xs = (2 : (2 : (h 2)))} in [head xs, head xs - 1]

 = let {xs = (2 : (2 : (2 : (h 2))))} in [head xs, head xs - 1]

 =

All the above assuming g (h 2) is entered at the GHCi prompt

and thus needs to be printed in full by it.

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by value

Lambda Calculus (4A) –
Normal forms

32 Young Won Lim
9/5/22

Given an expression f x

Call-by-value: Evaluate x to v

Evaluate f to λy.e

Evaluate [y/v]e

Call-by-name: Evaluate f to λy.e

Evaluate [y/x]e

Call-by-need: Allocate a thunk v for x

Evaluate f to λy.e

Evaluate [y/v]e

http://dev.stephendiehl.com/fun/005_evaluation.html

Reductions in the expression f x

Lambda Calculus (4A) –
Normal forms

33 Young Won Lim
9/5/22

Call by value is an extremely common evaluation model.

Many programming languages both imperative and functional

use this evaluation strategy.

The essence of call-by-value is that

there are two categories of expressions: terms and values.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (1)

Lambda Calculus (4A) –
Normal forms

34 Young Won Lim
9/5/22

Values are lambda expressions and other terms

which are in normal form and cannot be reduced further.

All arguments to a function will be reduced to normal form

before they are bound inside the lambda and

reduction only proceeds once the arguments are reduced.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (2)

Lambda Calculus (4A) –
Normal forms

35 Young Won Lim
9/5/22

For a simple arithmetic expression, the reduction proceeds as follows.

Notice how the subexpression (2 + 2) is evaluated to normal form

before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)

Lambda Calculus (4A) –
Normal forms

36 Young Won Lim
9/5/22

In call-by-name evaluation,

the arguments to lambda expressions are substituted as is,

evaluation simply proceeds from left to right

substituting the outermost lambda or reducing a value.

If a substituted expression is not used it is never evaluated.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (1)

Lambda Calculus (4A) –
Normal forms

37 Young Won Lim
9/5/22

For example, the same expression we looked at for call-by-value

has the same normal form but arrives at it

by a different sequence of reductions:

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\y. y (2 + 2)) (\x. x + 1)

=> (\x. x + 1) (2 + 2)

=> (2 + 2) + 1

=> 4 + 1

=> 5

Call-by-name is non-strict, although very few languages use this model.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (2)

Lambda Calculus (4A) –
Normal forms

38 Young Won Lim
9/5/22

Call-by-need is a special type of non-strict evaluation

in which unevaluated expressions are represented

by suspensions or thunks which are passed

into a function unevaluated and

only evaluated when needed or forced.

When the thunk is forced

the representation of the thunk is updated

with the computed value

and is not recomputed upon further reference.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (1)

Lambda Calculus (4A) –
Normal forms

39 Young Won Lim
9/5/22

The thunks for unevaluated lambda expressions

are allocated when evaluated,

and the resulting computed value

is placed in the same reference

so that subsequent computations share the result.

If the argument is never needed

it is never computed,

which results in a trade-off

between space and time.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (2)

Lambda Calculus (4A) –
Normal forms

40 Young Won Lim
9/5/22

Since the evaluation of subexpression

does not follow any pre-defined order,

any impure functions with side-effects

will be evaluated in an unspecified order.

As a result call-by-need can only effectively

be implemented in a purely functional setting.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (3)

Lambda Calculus (4A) –
Normal forms

41 Young Won Lim
9/5/22

For a simple arithmetic expression,

the reduction proceeds as follows.

Notice how the subexpression (2 + 2) is evaluated

to normal form before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)

Lambda Calculus (4A) –
Normal forms

42 Young Won Lim
9/5/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

