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The expression (λx.x x)(λx.x x) does not have a normal form 

because it always evaluates to itself. 

(λx.x x)(λx.x x)

(λx.x x) (λx.x x)

We can think of this expression 

as a representation for an infinite loop.

The expression (λx. λy. y)((λz.z z)(λz.z z)) 

can be reduced to the normal form λy.y.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Normal Form (2)

(λx. λy. y)((λz.z z)(λz.z z)) 
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Q: If a lambda expression does have a normal form, do all choices of reduction sequences get 

there?

A: No. Consider the following lambda expression:

    (λx.λy.y)((λz.zz)(λz.zz)) 

This lambda expression contains two redexes: the first is the whole expression (the application of 

(λx.λy.y) to its argument); the second is the argument itself: ((λz.zz)(λz.zz)). The second redex is 

the one we used above to illustrate a lambda expression with no normal form; each time you 

beta-reduce it, you get the same expression back. Clearly, if we keep choosing that redex to 

reduce we're never going to find a normal form for the whole expression. However, if we reduce 

the first redex we get: λy.y, which is in normal form. Therefore, the sequence of choices that we 

make can determine whether or not we get to a normal form.

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html

Normal Form (2)

(λx. λy. y)((λz.z z)(λz.z z)) 
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(Church-Rosser Theorem) 

Suppose an expression A can be reduced 

by a sequence of reductions to an expression B, 

and it can be reduced by another sequence of reductions 

to another expression C. 

Then there exists some expression D 

that can be reached from a sequence of reductions from B 

and also from a sequence of reductions from C.

http://www.cburch.com/books/lambda/

Normal Form (3)

A

B

CD
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Essentially, this theorem says that 

no reduction will ever be a wrong turn. 

As long as we can find a reduction to perform, 

then it will still be possible to reach 

whatever destination somebody else can find.

http://www.cburch.com/books/lambda/

Normal Form (4)
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We call an expression irreducible 

if there are no reductions 

that can be performed on the expressions, 

such as 1 or λx.x or λf.f (λy.y), 

but not (λy.y) f, which can be reduced to f.

An irreducible expression is sometimes 

said to be in normal form.

Not counting α-reductions as reductions here 

http://www.cburch.com/books/lambda/

Normal Form (5)
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Not all expressions can be reduced to irreducible form. 

One of the simplest is (λx.x x) (λx.x x)

An application of beta-reduction to (λx.x x) (λx.x x)

simply returns us to the same expression we already have. 

Even worse is the expression

(λx.x x x) (λx.x x x),

which will get longer each time we try to reduce it. 

http://www.cburch.com/books/lambda/

Normal Form (7)
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http://www.cburch.com/books/lambda/

Normal Form (8)

A

CB

D

The Church-Rosser Theorem implies 

that there cannot be two different 

irreducible forms of an expression. 

After all, if A could be reduced to two distinct 

irreducible forms, B and C, 

then the theorem says we would be able 

to reduce both B and C, 

and so they are actually not irreducible.

Contradiction!
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A natural question to ask is: Is there a technique for always reaching irreducible form when it 

exists? One important evaluation order is eager evaluation (or sometimes applicative order of 

evaluation or strict evaluation), in which an argument is always reduced before it is applied to a 

function. This is the ordering used in most programming languages, where we evaluate the value 

of an argument before passing it into a function.

(λx.x + 1) ((λy.2 × y) 3)  ⇒ (λx.x + 1) (2 × 3)  (λx.x + 1) 6⇒
 ⇒ 6 + 1  7⇒

http://www.cburch.com/books/lambda/

Normal Form (9)
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Unfortunately, eager evaluation does not always reach irreducible form when it exists. Consider 

the expression

(λx.1) ((λx.x x) (λx.x x)).

Using eager evaluation, we would first try to reduce the argument, but that simply reduces to 

itself. (Before trying to reduce (λx.x x) (λx.x x), though, we'd first have to examine the argument, 

λx.x x. In this case, though, there are no reductions to perform.) Yet this expression can reduce 

to irreducible form, for if we apply the argument to λx.1 immediately, we would reach 1 without 

needing to reduce the argument at any time. Eager evaluation, though, would never get us there.

http://www.cburch.com/books/lambda/

Normal Form (10)
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Alternatively, lazy evaluation order (sometimes called the normal order of evaluation) has us 

always pass an argument into a function unsimplified, only reducing the argument when needed.

(λx.x + 1) ((λy.2 × y) 3)  ⇒ ((λy.2 × y) 3) + 1

 ⇒ (2 × 3) + 1  6 + 1  7⇒ ⇒

It turns out, mathematicians have proven that lazy evaluation does guarantee that we reach 

irreducible form when possible.

http://www.cburch.com/books/lambda/

Normal Form (11)
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If an expression can be reduced to an irreducible expression, then lazy evaluation order will 

reach it.

Due to this theorem, this evaluation order is sometimes called normal order (since an irreducible 

expression is said to be in normal form).

(Technically, we'll subtly distinguish the terms lazy evaluation and normal evaluation, as 

described in Section 2.1.)

http://www.cburch.com/books/lambda/

Normal Form (12)
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● CFG for the Lambda Calculus
● Function Abstraction
● Function Application
● Free and Bound Variables
● Beta Reductions
● Evaluating a Lambda Expression
● Currying
● Renaming Bound Variables by Alpha Reduction
● Eta Conversion
● Substitutions
● Disambiguating Lambda Expressions
● Normal Form
● Evaluation Strategies

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html
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An evaluation strategy specifies the order 

in which beta reductions for a lambda expression are made.

Some reduction orders for a lambda expression 

may yield a normal form 

while other orders may not. 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (1)
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For example, consider the given expression

    (λx.1)((λx.x x)(λx.x x)) 

This expression has two redexes:

    The entire expression is a redex 

in which we can apply the function (λx.1) 

to the argument ((λx.x x)(λx.x x)) 

to yield the normal form 1. 

this redex is the leftmost outermost redex 

in the given expression.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (2)
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    The subexpression ((λx.x x)(λx.x x)) is also a redex 

in which we can apply the function (λx.x x) 

to the argument (λx.x x). 

Note that this redex is the leftmost innermost redex 

in the given expression. 

But if we evaluate this redex we get same subexpression: 

(λx.x x)(λx.x x) → (λx.x x)(λx.x x). 

Thus, continuing to evaluate the leftmost innermost redex 

will not terminate and no normal form will result.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (3)
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There are two common reduction orders for lambda expressions: 

normal order evaluation and 

applicative order evaluation.

    

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (4)
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Normal order evaluation

we always reduce the leftmost outermost redex at each step.

    The first reduction order above is a normal order evaluation.

a remarkable property of lambda calculus is 

that every lambda expression has a unique normal form 

if one exists. 

Moreover, if an expression has a normal form, 

then normal order evaluation will always find it.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (5)
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Applicative order evaluation

    we always reduce the leftmost innermost redex at each step.

The second reduction order above is 

an applicative order evaluation.

rhus, even though an expression may have a normal form, 

applicative order evaluation may fail to find it.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Evaluation Strategies (6)



Lambda Calculus (4A) – 
Normal forms

21 Young Won Lim
9/5/22

Call-by-value: 

arguments are evaluated before a function is entered

Call-by-name: 

arguments are passed unevaluated

Call-by-need: 

arguments are passed unevaluated 

but an expression is only evaluated once 

and shared upon subsequent references

http://dev.stephendiehl.com/fun/005_evaluation.html

Evaluation models of a function
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Call by name is non-memoizing non-strict evaluation strategy 

where the value(s) of the argument(s) need only be found 

when actually used inside the function's body, each time anew:

Call by need is memoizing non-strict a.k.a. lazy evaluation strategy 

where the value(s) of the argument(s) need only be found 

when used inside the function's body for the first time, 

and then are available for any further reference:

Call by value is strict evaluation strategy 

where the value(s) of the argument(s) must be found 

before entering the function's body:

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons
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https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

Call by name non-memoizing non-strict 

Call by need memoizing non-strict

Call by value strict 
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https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Comparisons

non-memoizing non-strict Call by name the value(s) of the argument(s) need only be found 

when actually used inside the function's body, each time anew:

Call by need the value(s) of the argument(s) need only be found 

when used inside the function's body for the first time, 

and then are available for any further reference:

Call by value the value(s) of the argument(s) must be found 

before entering the function's body:

memoizing non-strict

strict 
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Memoization is a technique 

for storing values of a function 

instead of recomputing them 

each time the function is called. 

Sharing means that temporary data is physically stored, 

if it is used multiple times.

https://wiki.haskell.org/Memoization

Memoization / Sharing 
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Strict evaluation, or eager evaluation, is an evaluation strategy 

where expressions are evaluated 

as soon as they are bound to a variable. 

when x = 3 * 7 is read, 3 * 7 is immediately computed 

and 21 is bound to x. 

Conversely, with lazy evaluation 

values are only computed when they are needed. 

In the example x = 3 * 7, 3 * 7 isn't evaluated until it's needed, 

like if you needed to output the value of x. 

https://en.wikibooks.org/wiki/Haskell/Strictness https://wiki.haskell.org/Sharing

Strictness

https://en.wikibooks.org/wiki/Haskell/Strictness
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Haskell is a non-strict language, and most implementations 

use a strategy called laziness to run your program. 

Basically laziness == non-strictness + sharing.

Laziness can be a useful tool for improving performance, 

but more often than not it reduces performance 

by adding a constant overhead to everything. 

https://wiki.haskell.org/Performance/Strictness

Laziness
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Because of laziness, the compiler can't 

evaluate a function argument 

and pass the value to the function, 

it has to record the expression 

in the heap in a suspension (or thunk) 

in case it is evaluated later. 

Storing and evaluating suspensions is costly, and unnecessary 

if the expression was going to be evaluated anyway. 

https://wiki.haskell.org/Performance/Strictness

Laziness
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h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

        = [let {xs = (h 2)} in head xs, let {xs = (h 2)} in head xs - 1]

        = [head (h 2),                  let {xs = (h 2)} in head xs - 1]

        = [head (let {x = 2} in x : (h x)}), let {xs = (h 2)} in head xs - 1]

        = [let {x = 2} in x,            let {xs = (h 2)} in head xs - 1]

        = [2,                           let {xs = (h 2)} in head xs - 1]

        = ....

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by name 
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h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)}       in [head xs, head xs - 1]

        = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

        = let {xs = (2 : (h 2))} in [2,       head xs - 1]

        = ....

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by need 
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h x = x : (h x)

g xs = [head xs, head xs - 1]

g (h 2) = let {xs = (h 2)} in [head xs, head xs - 1]

        = let {xs = (2 : (h 2))} in [head xs, head xs - 1]

        = let {xs = (2 : (2 : (h 2)))} in [head xs, head xs - 1]

        = let {xs = (2 : (2 : (2 : (h 2))))} in [head xs, head xs - 1]

        = ....

All the above assuming g (h 2) is entered at the GHCi prompt 

and thus needs to be printed in full by it.

https://stackoverflow.com/questions/61601125/haskell-semantics-call-by-name-value

Call by value 
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Given an expression f x

Call-by-value:    Evaluate x to v

Evaluate f to λy.e

Evaluate [y/v]e

Call-by-name: Evaluate f to λy.e

Evaluate [y/x]e

Call-by-need: Allocate a thunk v for x

Evaluate f to λy.e

Evaluate [y/v]e

http://dev.stephendiehl.com/fun/005_evaluation.html

Reductions in the expression f x 
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Call by value is an extremely common evaluation model. 

Many programming languages both imperative and functional 

use this evaluation strategy. 

The essence of call-by-value is that 

there are two categories of expressions: terms and values. 

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (1)
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Values are lambda expressions and other terms 

which are in normal form and cannot be reduced further. 

All arguments to a function will be reduced to normal form 

before they are bound inside the lambda and 

reduction only proceeds once the arguments are reduced.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (2)
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For a simple arithmetic expression, the reduction proceeds as follows. 

Notice how the subexpression (2 + 2) is evaluated to normal form 

before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)
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In call-by-name evaluation, 

the arguments to lambda expressions are substituted as is, 

evaluation simply proceeds from left to right 

substituting the outermost lambda or reducing a value. 

If a substituted expression is not used it is never evaluated.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (1)



Lambda Calculus (4A) – 
Normal forms

37 Young Won Lim
9/5/22

For example, the same expression we looked at for call-by-value 

has the same normal form but arrives at it 

by a different sequence of reductions:

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\y. y (2 + 2)) (\x. x + 1)

=> (\x. x + 1) (2 + 2)

=> (2 + 2) + 1

=> 4 + 1

=> 5

Call-by-name is non-strict, although very few languages use this model.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by name (2)
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Call-by-need is a special type of non-strict evaluation 

in which unevaluated expressions are represented 

by suspensions or thunks which are passed 

into a function unevaluated and 

only evaluated when needed or forced. 

When the thunk is forced 

the representation of the thunk is updated 

with the computed value 

and is not recomputed upon further reference.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (1)
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The thunks for unevaluated lambda expressions 

are allocated when evaluated, 

and the resulting computed value 

is placed in the same reference 

so that subsequent computations share the result. 

If the argument is never needed 

it is never computed, 

which results in a trade-off 

between space and time.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (2)
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Since the evaluation of subexpression 

does not follow any pre-defined order, 

any impure functions with side-effects 

will be evaluated in an unspecified order. 

As a result call-by-need can only effectively 

be implemented in a purely functional setting.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by need (3)
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For a simple arithmetic expression, 

the reduction proceeds as follows. 

Notice how the subexpression (2 + 2) is evaluated 

to normal form before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (3)
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