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In mathematics, a fixed point (fixpoint), 

also known as an invariant point, 

is a value that does not change under a given transformation. 

Specifically, for functions, 

a fixed point is an element 

that is mapped to itself by the function. 

Formally, c is a fixed point of a function f 

if c belongs to both the domain and the codomain of f, and 

f(c) = c.

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (1)

x f(x)

c   fixed point f(c) = c
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For example, if f is defined on the real numbers by

f(x) = x2 − 3x + 4 ,

then 2 is a fixed point of f, because f(2) = 2.

Not all functions have fixed points: for example, 

f(x) = x + 1, has no fixed points, 

since x is never equal to x + 1 for any real number. 

In graphical terms, a fixed-point x means 

the point (x, f(x)) is on the line y = x, or in other words 

the graph of f has a point in common with that line. 

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (2)
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In logic, extensionality, or extensional equality, 

refers to principles that judge objects to be equal 

if they have the same external properties. 

It stands in contrast to the concept of intensionality, 

which is concerned with whether 

the internal definitions of objects are the same. 

https://en.wikipedia.org/wiki/Extensionality

Extensionality (1)
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Consider the two functions f and g 

mapping from and to natural numbers, 

defined as follows:

    To find f(n), first add 5 to n, then multiply by 2.   (n + 5)*2

    To find g(n), first multiply n by 2, then add 10.    2*n + 10 

These functions are extensionally equal; 

given the same input, both functions always produce the same value. 

But the definitions of the functions are not equal, 

and in that intensional sense the functions are not the same.

https://en.wikipedia.org/wiki/Extensionality

Extensionality (2)

f f(n)n

g g(n)n

(n + 5)*2 f(n)n

2*n + 10n g(n)

extensionally equal

intensionally inequal
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Similarly, in natural language 

there are many predicates (relations) 

that are intensionally different 

but are extensionally identical. 

For example, suppose that a town has one person named Joe, 

who is also the oldest person in the town. 

Then, the two predicates "being called Joe", 

and "being the oldest person in this town" 

are intensionally distinct, 

but extensionally equal 

for the (current) population of this town. 

https://en.wikipedia.org/wiki/Extensionality

Extensionality (3)
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Combinatory logic is a notation 

to eliminate the need for quantified variables in mathematical logic. 

It was introduced by Moses Schönfinke and Haskell Curry, 

and has more recently been used in computer science 

as a theoretical model of computation 

and also as a basis for the design of 

functional programming languages. 

It is based on combinators

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic 

without using quantified variables 

theoretical model of computation

functional programming

combinators
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combinators were introduced by Schönfinkel in 1920 

with the idea of providing an analogous way 

– to build up functions

– to remove any mention of variables 

– particularly in predicate logic. 

A combinator is a higher-order function 

that uses only function application 

earlier defined combinators 

to define a result from its arguments. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinator

Combinators:
define a result by its argument
without free variables
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Combinator  : A lambda expression containing no free variables. 

the word is usually understood more specifically 

to refer to certain combinators of special importance, 

in particular the following four:

I = λx . x Identity

K = λx . λy . x Constant function

S = λx . λy . λz . x(z)(y(z)) Substitution operator 

Y = λf . (λu . f(u(u))) (λu . f(u(u)))

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (1)

f xx

f x
x
y
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Informally, a tree (xy) can be thought of 

as a function x applied to an argument y. 

When evaluated (i.e., when the function is "applied" to the argument), 

the tree "returns a value", i.e., transforms into another tree. 

The "function", "argument" and the "value" are 

either combinators or binary trees. 

If they are binary trees, 

they may be thought of as functions too, if needed.

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (1-1)

x x yy

x y

xy
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Although the most formal representation of the objects in this system 

requires binary trees, 

for simpler typesetting 

they are often represented as parenthesized expressions, 

as a shorthand for the tree they represent. 

Any subtrees may be parenthesized, 

but often only the right-side subtrees are parenthesized, 

with left associativity implied for any unparenthesized applications. 

For example, ISK means ((IS)K). 

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (1-2)

IS K

ISK ((IS)K)

I S

I I SS

I S I S K K
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a tree whose left subtree is the tree KS 

and whose right subtree is the tree SK 

can be written as KS(SK). 

If more explicitness is desired, 

the implied parentheses can be included as well: ((KS)(SK)). 

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (1-3)

KS SK

KS(SK) ((KS)(SK))

K S S K

K K SS

K S KS(SK)S K

S S KK
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The evaluation operation is defined as follows:

x, y, and z represent expressions 

made from the functions S, K, and I, and set values: 

I returns its argument:

    I x = x

https://en.wikipedia.org/wiki/SKI_combinator_calculus

I combinator

I xx
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The simplest example of a combinator is I, the identity combinator, 

defined by

    (I x) = x for all terms x. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-1)
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K, when applied to any argument x, 

yields a one-argument constant function K x, 

which, when applied to any argument y, returns x:

    K x y = x

https://en.wikipedia.org/wiki/SKI_combinator_calculus

K combinator

K x
x
y

K K xx

K x xy

K x
x
y
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Another simple combinator is K,  

which manufactures constant functions: 

(K x) is the function which, for any argument, returns x, so we say

    ((K x) y) = x for all terms x and y. 

Or, following the convention for multiple application,

    (K x y) = x

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-2)
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S is a substitution operator. 

takes three arguments (x y z) 

returns the result of x z applied to the result of y z

the first argument (x) applied to the third (z), 

which is then applied to the result 

of the second argument (y) applied to the third (z). 

    S x y z = x z (y z)

https://en.wikipedia.org/wiki/SKI_combinator_calculus

S combinator

S x z (y z)
x
y
z

x x zz

x z KS(SK)y z

y y z z

a function of x z with the argument y z
a function of x with the argument z
a function of y with the argument z
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A third combinator is S, which is a generalized version of application:

    (S x y z) = (x z (y z))

S applies x to y 

after first substituting z into each of them (x and y)

x is applied to y 

inside the environment z.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-1)
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Given S and K, I itself is unnecessary, 

since it can be built from the other two:

    ((S K K) x)

        = (S K K x)

        = (K x (K x))

        = x

for any term x.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-2)
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SKSK evaluates to KK(SK) by the S-rule. 

Then if we evaluate KK(SK), we get K by the K-rule. 

As no further rule can be applied, the computation halts here.

For all trees x and all trees y, 

SKxy will always evaluate to y in two steps, Ky(xy) = y, 

so the ultimate result of evaluating SKxy 

will always equal the result of evaluating y. 

We say that SKx and I are "functionally equivalent" for any x 

because they always yield the same result when applied to any y.

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (3-1)

S x  y  z  = x z (y z) S-rule

S K S K = K K (S K)

K  x   y       = x K-rule

K K (S K)   = K

S K  x  y  = K y (x y) = y

I y = y 
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it can be shown that SKI calculus is not the minimum system 

that can fully perform the computations of lambda calculus, 

as all occurrences of I in any expression can be replaced 

by (SKK) or (SKS) or (SK x) for any x, 

and the resulting expression will yield the same result. 

So the "I" is merely syntactic sugar. 

Since I is optional, the system is also referred 

as SK calculus or 

SK combinator calculus. 

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (3-2)

S K  x  y  = K y (x y) = y

I y = y 

S K  K  y  = K y (K y) = y

I y = y 

S K  S  y  = K y (S y) = y

I y = y 
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 Note that although ((S K K) x) = (I x) for any x, 

(S K K) itself is not equal to I. 

We say the terms are extensionally equal. 

Extensional equality captures the mathematical notion 

of the equality of functions: 

that two functions are equal 

if they always produce the same results for the same arguments. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-1)
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In contrast, the terms themselves, 

together with the reduction of primitive combinators, 

capture the notion of intensional equality of functions: 

that two functions are equal 

only if they have identical implementations 

up to the expansion of primitive combinators. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-2)
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There are many ways to implement an identity function; 

(S K K) and I are among these ways. 

(S K S) is yet another. 

We will use the word equivalent to indicate extensional equality, 

reserving equal for identical combinatorial terms. 

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-3)
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A more interesting combinator is 

the fixed point combinator or Y combinator, 

which can be used to implement recursion.

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (4)
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The combinators I, K, and S were introduced by Schönfinkel and Curry, 

who showed that any λ-expression can essentially be formed 

by combining them. 

More recently combinators have been applied 

to the design of implementations for functional languages. 

In particular Y (also called the paradoxical combinator) 

can be seen as producing fixed points, since Y(f) reduces to f(Y(f)).

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/combinator

Combinator Definitions (2)

I = λx . x

K = λx . λy . x

S = λx . λy . λz . x(z)(y(z))

Y = λf . (λu . f(u(u))) (λu . f(u(u)))
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Lambda calculus is concerned with objects called lambda-terms, 

which can be represented by the following three forms of strings:

    v 

    λv. E
1
 

    (E
1
 E

2
) 

where v is a variable name drawn 

from a predefined infinite set of variable names, 

and E
1
 and E

2
 are lambda-terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (1)
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 Terms of the form λv. E
1
 are called abstractions. 

The variable v is called the formal parameter of the abstraction, 

and E
1
 is the body of the abstraction. 

The term λv. E
1
 represents the function 

applied to an argument, 

binds the formal parameter v to the argument 

computes the resulting value of E
1
 

returns E
1
, with every occurrence of v replaced by the argument.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (2)

    v 

    λv. E
1
 

    (E
1
 E

2
) 
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Terms of the form (E
1
  E

2
)  are called applications. 

applications model function invocation or execution: 

the function represented by E
1
  is to be invoked, 

with E
2
  as its argument, and the result is computed. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-1)
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If E
1
 (the applicand) is an abstraction, the term may be reduced: 

E
2
, the argument, may be substituted into the body of E

1
 

in place of the formal parameter v of E
1
, 

and the result is a new lambda term which is equivalent to the old one. 

If a lambda term contains no subterms of the form ((λv. E
1
) E

2
) 

then it cannot be reduced, and is said to be in normal form. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (3-2)



Lambda Calculus (8A) – 
Combinators

32 Young Won Lim
12/3/24

The motivation for this definition of reduction is 

that it captures the essential behavior of all mathematical functions. 

For example, consider the function 

that computes the square of a number. We might write

    The square of x is x * x (using * to indicate multiplication.) 

x here is the formal parameter of the function. 

To evaluate the square for a particular argument, say 3, 

we insert it into the definition in place of the formal parameter:

    The square of 3 is 3 * 3

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (4)
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To evaluate the resulting expression 3 * 3, we would have to resort 

to our knowledge of multiplication and the number 3. 

Since any computation is simply a composition of 

the evaluation of suitable functions 

on suitable primitive arguments, 

this simple substitution principle suffices 

to capture the essential mechanism of computation. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (5)
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Moreover, in lambda calculus, notions such as '3' and '*' 

can be represented without any need for externally defined 

primitive operators or constants. 

It is possible to identify terms in lambda calculus, 

which, when suitably interpreted, behave like the number 3 

and like the multiplication operator *,  q.v. Church encoding. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (6)
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Lambda calculus is known to be computationally equivalent 

in power to many other plausible models for computation 

(including Turing machines); 

that is, any calculation that can be accomplished 

in any of these other models can be expressed in lambda calculus, 

and vice versa. 

According to the Church-Turing thesis, 

both models can express any possible computation. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (7)
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lambda-calculus can represent any conceivable computation 

using only the simple notions 

of function abstraction and application 

based on simple textual substitution of terms for variables. 

abstraction is not even required. 

Combinatory logic is 

a model of computation equivalent to lambda calculus, 

but without abstraction. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-1)
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Combinatory logic is 

a model of computation equivalent to lambda calculus, 

but without abstraction. 

The advantage of this is that 

evaluating expressions in lambda calculus is quite complicated 

because the semantics of substitution must be specified 

with great care to avoid variable capture problems. 

evaluating expressions in combinatory logic is much simpler, 

because there is no notion of substitution. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-2)
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abstraction is the only way to manufacture functions 

in the lambda calculus

Instead of abstraction, 

combinatory calculus provides a limited set of primitive functions 

out of which other functions may be built. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Calculus 
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A combinatory term has one of the following forms:

Syntax Name Description

x Variable A character or string representing a combinatory term.

P Primitive function One of the combinator symbols I, K, S.

(M N) Application Applying a function to an argument. M and N are combinatory terms.

 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms  (1)
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The primitive functions are combinators, or functions that, 

when seen as lambda terms, contain no free variables.

To shorten the notations, a general convention is that ( E
1
 E

2
 E

3
 . . . E

n
 ), 

or even E
1
 E

2
 E

3
 . . . E

n
, denotes the term ( . . . ( ( E

1
 E

2
 ) E

3
 ) . . . E

n
 ) . 

This is the same general convention (left-associativity) 

as for multiple application in lambda calculus. 

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms  (2)



Lambda Calculus (8A) – 
Combinators

41 Young Won Lim
12/3/24

In combinatory logic, each primitive combinator comes 

with a reduction rule of the form

    (P x
1
 ... x

n
) = E

where E is a term mentioning only variables from the set {x
1
 ... x

n
}. 

It is in this way that primitive combinators behave as functions. 

https://en.wikipedia.org/wiki/Combinatory_logic

Reductions in Combinatory Logic 
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It is possible to define a complete system 

using only one (improper) combinator. 

An example is Chris Barker's iota combinator, 

which can be expressed in terms of S and K as follows:

    ιx = xSK

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (1) 
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It is possible to reconstruct S, K, and I from the iota combinator. 

Applying ι to itself gives ιι = ιSK = SSKK = SK(KK) 

which is functionally equivalent to I. 

ιx = xSK

ιι = ιSK

ιS = SSK

ιι = (ιS)K = (SSK)K = SK(KK) 

ιι y = ιSKy = SK(KK)y = Ky (KK)y = y ιι = I

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (2) 

ιx = xSK

ιι = ιSK and ιS = SSK

(ιS)K = (SSK)K 

SSKK= SK KK 

SKKK = KK KK = K

K K (KK) = K

ιι y = ιSKy = SK(KK)y = Ky (KK)y = y 

S K  x  y  = K y (x y) = y

I y = y 
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K can be constructed by applying ι twice to I (= ιι)

(which is equivalent to application of ι to itself): 

ι(ι(ιι)) = ι(ιιSK) = ι(ISK) = ι(SK) = SKSK = K. 

ι(ι(ιι)) = ι(ιιSK) 

= ι(ISK) ιι = I

= ι(SK) 

= (SK)SK 

= K K SK

= K 

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (3) 

ιx = xSK

ιι = ιSK

ιS = SSK

ιι = (ιS)K = (SSK)K = SK(KK) 

ιι = ι(SK) = (SK)SK = K K SK = K
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K can be constructed by applying ι twice to I (= ιι)

(which is equivalent to application of ι to itself): 

ι(ι(ιι)) = ι(ιιSK) = ι(ISK) = ι(SK) = SKSK = K. 

Applying ι one more time to ι(ι(ιι)) gives 

ι(ι(ι(ιι))) = ιK = KSK = S 

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Iota combinator (4) 

ιx = xSK

ιι = ιSK

ιS = SSK

ιι = (ιS)K = (SSK)K = SK(KK) 

ι(ι(ιι)) = ι(ιιSK) 

= ι(ISK) 

= ι(SK) 

= (SK)SK 

ιx = xSK

ιι = I

ιιι = K

ιιιι = S
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Improper combinators, meaning that they are expressed 

in terms of other combinators rather than pure abstractions.

To be precise: in lambda calculus a proper combinator is 

an expression of the form (λ.x
1
x

2
…P(x

1
,x

2
,…)), 

where P(x
1
,x

2
,…) only has x

1
, x

2
 etc. as free variables, 

and does not contain any abstractions. 

So for example, (λxyz.x(zz)) is a proper combinator, 

but (λx.x(λy.y)) is not, because it contains x applied to a lambda term.

https://cs.stackexchange.com/questions/57507/basis-sets-for-combinator-calculus

Improper Combinator 
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