
1 Young Won Lim
6/30/22

Monad P3 : Haskel Expressions (1E)

2 Young Won Lim
6/30/22

 Copyright (c) 2022 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Haskell
Expressions (1E)

3 Young Won Lim
6/30/22

Haskell Expressions

Haskell
Expressions (1E)

4 Young Won Lim
6/30/22

Because Haskell is a purely functional language,

all computations are done via the evaluation of

expressions (syntactic terms) to yield values

Every value has an associated type.

(Intuitively, we can think of types as sets of values.)

Examples of expressions include atomic values

such as the integer 5, the character 'a',

and the function \x -> x+1,

as well as structured values

such as the list [1,2,3] and the pair ('b',4).

https://www.haskell.org/tutorial/goodies.html

Expressions and values

Expressions

Value Type

Atomic values
Structured values

Haskell
Expressions (1E)

5 Young Won Lim
6/30/22

Just as expressions denote values,

type expressions are syntactic terms

that denote type values (or just types).

Examples of type expressions include the atomic types

Integer (infinite-precision integers),

Char (characters),

Integer->Integer (functions mapping Integer to Integer),

as well as the structured types

[Integer] (homogeneous lists of integers) and

(Char,Integer) (character, integer pairs).

https://www.haskell.org/tutorial/goodies.html

Type expressions and types

expression Type expression

value Type value

Atomic types
Structured types

Atomic values
Structured values

Haskell
Expressions (1E)

6 Young Won Lim
6/30/22

All Haskell values are "first-class"

- they may be passed as arguments to functions,

- returned as results,

- placed in data structures, etc.

Haskell types, on the other hand, are not first-class.

https://www.haskell.org/tutorial/goodies.html

First class values

Haskell
Expressions (1E)

7 Young Won Lim
6/30/22

Types in a sense describe values, and

the association of a value with its type is called a typing.

Using the examples of values and types above,

we write typing as follows: (the "::" can be read "has type.")

 5 :: Integer

 'a' :: Char

 inc :: Integer -> Integer

 [1,2,3] :: [Integer]

 ('b',4) :: (Char,Integer)

https://www.haskell.org/tutorial/goodies.html

Typing

Haskell
Expressions (1E)

8 Young Won Lim
6/30/22

Functions in Haskell are normally defined by a series of equations.

For example, the function inc can be defined by the single equation:

Inc n = n+1

An equation is an example of a declaration.

Another kind of declaration is a type signature declaration,

with which we can declare an explicit typing for inc:

inc :: Integer -> Integer

https://www.haskell.org/tutorial/goodies.html

Function definition and declaration

Haskell
Expressions (1E)

9 Young Won Lim
6/30/22

when we wish to indicate that an expression e1 evaluates, or

"reduces," to another expression or value e2, we will write:

e1 => e2

For example, note that:

inc (inc 3) => 5

https://www.haskell.org/tutorial/goodies.html

Expression evaluation =>

Haskell
Expressions (1E)

10 Young Won Lim
6/30/22

Many programming languages differentiate

statements from expressions.

 Statement: What code does

 Expression: What code is

can think the term "statement" very broadly to refer to anything

that is not an expression or type declaration.

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statements vs Expressions

Haskell
Expressions (1E)

11 Young Won Lim
6/30/22

statements vs. expressions closely parallels

imperative languages vs. functional languages:

 Imperative: A language that emphasizes statements

 Functional: A language that emphasizes expressions

C lies at one end of the spectrum (imperative),

relying heavily on statements to accomplish everything.

Haskell lies at the exact opposite extreme (functional),

using expressions heavily:

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Imperative vs functional languages

Haskell
Expressions (1E)

12 Young Won Lim
6/30/22

#include <stdio.h>

int main(int argc, char *argv[]) {
 int elems[5] = {1, 2, 3, 4, 5}; // statement

 int total = 0;
 int i;

 for (i = 0; i < 5; i++) { // statement
 total += elems[i]; // statement
 }
 printf("%d\n", total); // statement

 return 0;
}

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statement examples in the imperative language C

Haskell
Expressions (1E)

13 Young Won Lim
6/30/22

everything in Haskell is an expression,

and even statements are expressions.

main = print (sum [1..5]) -- Expression

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expression examples in the functional language Haskell (1)

Haskell
Expressions (1E)

14 Young Won Lim
6/30/22

For example, the following code might appear to be

a traditional imperative-style sequence of statements:

main = do

 putStrLn "Enter a number:" -- Statement?

 str <- getLine -- Statement?

 putStrLn ("You entered: " ++ str) -- Statement?

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expression examples in the functional language Haskell (2)

Haskell
Expressions (1E)

15 Young Won Lim
6/30/22

but do notation is merely syntactic sugar

for nested applications of (>>=), which is itself nothing more than

an infix higher-order function:

main =

 putStrLn "Enter a number:" >>= (_ -> -- Expression

 getLine >>= (\str -> -- Sub-expression

 putStrLn ("You entered: " ++ str))) -- Sub-expression

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expression examples in the functional language Haskell (3)

Haskell
Expressions (1E)

16 Young Won Lim
6/30/22

In Haskell, "statements" are actually nested expressions,

and sequencing statements just builds larger and larger expressions.

This statement-as-expression paradigm promotes consistency

and prevents arbitrary language limitations,

such as Python's restriction of lambdas to single statements.

In Haskell, you cannot limit

the number of statements a term uses

any more than you can limit the number of sub-expressions.

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statement-as-expression

Haskell
Expressions (1E)

17 Young Won Lim
6/30/22

do notation works for more than just IO.

Any type that implements the Monad class

can be "sequenced" in statement form,

as long as it supports the following two operations:

class Monad m where

 (>>=) :: m a -> (a -> m b) -> m b

 return :: a -> m a

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Monads

Haskell
Expressions (1E)

18 Young Won Lim
6/30/22

This provides a uniform interface for translating

imperative statement-like syntax into expressions under the hood.

For example, the Maybe type implements the Monad class:

data Maybe a = Nothing | Just a

instance Monad Maybe where

 m >>= f = case m of

 Nothing -> Nothing

 Just a -> f a

 return = Just

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statement-like syntax using monads

Haskell
Expressions (1E)

19 Young Won Lim
6/30/22

This lets you assemble Maybe-based computations using do notation

example :: Maybe Int

example = do example =

 x <- Just 1 Just 1 >>= (\x ->

 y <- Nothing Nothing >>= (\y ->

 return (x + y) return (x + y)))

The above code desugars to nested calls to (>>=):

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

do notation using monads

Haskell
Expressions (1E)

20 Young Won Lim
6/30/22

The compiler then substitutes in our definition of (>>=) and return

example = case (Just 1) of

 Nothing -> Nothing

 Just x -> case Nothing of

 Nothing -> Nothing

 Just y -> Just (x + y)

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Substitute >>= and return

example =

Just 1 >>= (\x ->

 Nothing >>= (\y ->

return (x + y)))

instance Monad Maybe where

 m >>= f = case m of

 Nothing -> Nothing

 Just a -> f a

 return = Just

Haskell
Expressions (1E)

21 Young Won Lim
6/30/22

We can then hand-evaluate this expression to prove

that it short-circuits when it encounters Nothing:

-- Evaluate the outer `case`

example = case Nothing of

 Nothing -> Nothing

 Just y -> Just (1 + y)

-- Evaluate the remaining `case`

example = Nothing

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Evaluate the outer and inner case expression

example = case (Just 1) of

 Nothing -> Nothing

 Just x -> case Nothing of

 Nothing -> Nothing

 Just y -> Just (x + y)

Haskell
Expressions (1E)

22 Young Won Lim
6/30/22

Notice that we can evaluate these Maybe "statements"

without invoking any sort of abstract machine.

When everything is an expression,

everything is simple to evaluate

and does not require understanding or

invoking an execution model.

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Everything is an expression to be evaluated

Expression

 Evaluate

 Value

FSM not needed

for sequencing

Haskell
Expressions (1E)

23 Young Won Lim
6/30/22

Semantics

Haskell
Expressions (1E)

24 Young Won Lim
6/30/22

In fact, the distinction between statements and expressions

also closely parallels another important divide:

the difference between operational semantics and

denotational semantics.

 Operational semantics:

Translates code to abstract machine statements

 Denotational semantics:

Translates code to mathematical expressions

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Semantics

Haskell
Expressions (1E)

25 Young Won Lim
6/30/22

Haskell teaches you

to think denotationally in terms of expressions and their meanings

instead of statements and an abstract machine.

This is why Haskell makes you a better programmer:

you separate your mental model

from the underlying execution model, … abstract machine

so you can more easily identify common patterns

between diverse programming languages and problem domains.

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expressions and their meaning

Haskell
Expressions (1E)

26 Young Won Lim
6/30/22

the distinction between statements and expressions

in imperative languages

x = 2 + 2;

the x = ...; part being a statement

the 2 + 2 part being an expression.

The body of a Haskell function is

always one single expression

although you can split that one expression apart for convenience

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression

Haskell
Expressions (1E)

27 Young Won Lim
6/30/22

So if you want to "do more than one thing",

which is an imperative notion of a function

being able to change global state,

you solve this with monads, like so:

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression

Haskell
Expressions (1E)

28 Young Won Lim
6/30/22

Scotty is a web framework written in Haskell,

which is similar to Ruby’s Sinatra.

You can install it using the following commands:

$ sudo apt-get install cabal-install

$ cabal update

$ cabal install scotty

You can compile and start the server from the terminal

$ runghc hello-world.hs

Setting phasers to stun... (port 3000) (ctrl-c to quit)

http://shakthimaan.com/posts/2016/01/27/haskell-web-programming/news.html

Web service examples

Haskell
Expressions (1E)

29 Young Won Lim
6/30/22

$ runghc hello-world.hs

The service will run on port 3000, and

you can open localhost:3000 in a browser

to see the `Hello, World!’ text.

You can also use Curl to make a query to the server.

$ sudo apt-get install curl

$ curl localhost:3000

Hello, World!

http://shakthimaan.com/posts/2016/01/27/haskell-web-programming/news.html

hello-world.hs

-- hello-world.hs

{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

main :: IO ()

main = scotty 3000 $ do

 get "/" $ do

 html "Hello, World!"

Haskell
Expressions (1E)

30 Young Won Lim
6/30/22

{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

import Network.HTTP.Types

main = scotty 3000 $ do

 get "/" $ do -- handle GET request on "/" URL

 text "This was a GET request!" -- send 'text/plain' response

 delete "/" $ do -- handle DELETE request on "/" URL

 html "This was a DELETE request!" – send 'text/html' response

 post "/" $ do -- handle POST request on "/" URL

 text "This was a POST request!" -- send 'text/plain' response

 put "/" $ do -- handle PUT request on "/" URL

 text "This was a PUT request!" -- send 'text/plain' response

https://dev.to/parambirs/how-to-write-a-haskell-web-servicefrom-scratch---part-3-5en6

Web service requests and responses

Haskell
Expressions (1E)

31 Young Won Lim
6/30/22

{-# LANGUAGE OverloadedStrings #-}

is called a language pragma and

extends the languauge with nice features.

In this case, OverloadedStrings allows us to write a string and

it gets automatically converted to the string type we need

(String, ByteString, or Text).

https://www.stackbuilders.com/blog/getting-started-with-haskell-projects-using-scotty/

Overloaded Strings

{-# LANGUAGE OverloadedStrings #-}

Haskell
Expressions (1E)

32 Young Won Lim
6/30/22

scotty is the entry function

that Scotty defines for running an application.

The first parameter is the port that we want it to run in, and

the rest is the application,

which looks like a list of routes and handlers.

For now, we only have one route (the root) and a handler,

which is a GET and returns an HTML string with a title.

https://www.stackbuilders.com/blog/getting-started-with-haskell-projects-using-scotty/

Entry function scotty

 scotty 3000 $

 get "/" $

 html "<h1>Shortener</h1>"

Haskell
Expressions (1E)

33 Young Won Lim
6/30/22

https://dev.to/parambirs/how-to-write-a-haskell-web-servicefrom-scratch---part-3-5en6

Named and unnambed parameters

-- named parameters:

get "/askfor/:word" $ do

 w <- param "word"

 html $ mconcat ["<h1>You asked for ", w, ", you got it!</h1>"]

-- unnamed parameters from a query string or a form:

post "/submit" $ do -- e.g. http://server.com/submit?name=somename

 name <- param "name"

 text name

Haskell
Expressions (1E)

34 Young Won Lim
6/30/22

{-# LANGUAGE OverloadedStrings #-}

module Main (main) where

import Web.Scotty

main :: IO ()

main = scotty 3000 $

 get "/:who" $ do

 who <- param "who"

 text ("Beam " <> who <> " up, Scotty!")

Ghci> [1,2,3] <> [4,5,6] -- concatenation

[1,2,3,4,5,6]

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (1)

Haskell
Expressions (1E)

35 Young Won Lim
6/30/22

Here, main's body (a monadic action, not a function) is

a single expression, scotty 3000 (...).

While the linebreak1 after scotty 3000 $ doesn't carry meaning

and only makes the code look nicer,

the linebreak2 in the do block actually

reduces multiple actions into one expression

via syntactic sugar.

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (2)

main :: IO ()

main = scotty 3000 $ -- linebreak1

 get "/:who" $ do -- linebreak2

 who <- param "who"

 Text ("..." <> who <> " ...")

Haskell
Expressions (1E)

36 Young Won Lim
6/30/22

So while it may seem that this event handler

does two things things:

(1) param "who"

(2) text (...)

it is still one expression equivalent to this:

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (3)

{-# LANGUAGE OverloadedStrings #-}

module Main (main) where

import Web.Scotty

main :: IO ()

main = scotty 3000 $

 get "/:who" $ do

 who <- param "who"

 text ("Beam " <> who <> " up, Scotty!")

Haskell
Expressions (1E)

37 Young Won Lim
6/30/22

main =

 scotty 3000

(get "/:who"

(param "who" >>=

(\who -> text ("Beam " <> who <> " up, Scotty!"))))

with >>= being the invisible operator between the do-block lines.

When expressions begin to grow, this becomes very inconvenient,

so you split parts of them into sub-expressions

and give those names, e.g. like:

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (4)

Haskell
Expressions (1E)

38 Young Won Lim
6/30/22

main = scotty 3000 handler

 where

 handler = do

 get "/:who" getWho

 post "/" postWho

 getWho = do

 ...

 postWho = do

 ...

But it is essentially equivalent to one big expression.

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (5)

Haskell
Expressions (1E)

39 Young Won Lim
6/30/22

There are many things in the language beyond function bodies

that are not expressions; in the example above,

the following are not expressions:

● {-# LANGUAGE OverloadedStrings #-} (a language pragma)

● module Main (main) where (a module, export list)

● import Web.Scotty (an import declaration)

● main :: IO () (a type signature)

● main = (a top declaration, or

 a value binding)

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (6)

Haskell
Expressions (1E)

40 Young Won Lim
6/30/22

import Web.Scotty could be called a kind of statement,

since grammatically it's in imperative form,

but if we're going to be imprecise,

It would be ok to call them all declarations.

More interestingly, in Haskell you have

both an expression language

at the value level and one at the type level.

So IO () isn't a value expression, but it's a type expression.

If you had the ability to mix those two expression languages up,

you'd have dependent types.

https://www.haskell.org/tutorial/goodies.html

Haskell expression in scotty examples (7)

● {-# LANGUAGE OverloadedStrings #-}

 (a language pragma)

● module Main (main) where

 (a module, export list)

● import Web.Scotty

 (an import declaration)

● main :: IO ()

 (a type signature)

● main =

 (a top declaration, or a value binding)

Haskell
Expressions (1E)

41 Young Won Lim
6/30/22

Haskell
Expressions (1E)

42 Young Won Lim
6/30/22

Lazy evaluation

Operational semantics

Haskell
Expressions (1E)

43 Young Won Lim
6/30/22

It is one of the key properties of

purely functional languages like Haskell

that a direct mathematical interpretation like "1+9 denotes 10"

carries over to functions, too:

in essence, the denotation of a program of type Integer -> Integer

is a mathematical function Z → Z between integers.

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (1)

Haskell
Expressions (1E)

44 Young Won Lim
6/30/22

While we will see that this expression needs refinement generally,

to include non-termination,

the situation for imperative languages is clearly worse:

a procedure with that type denotes something

that changes the state of a machine in possibly unintended ways.

Imperative languages are tightly tied to operational semantics

which describes their way of execution on a machine.

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (2)

Haskell
Expressions (1E)

45 Young Won Lim
6/30/22

It is possible to define a denotational semantics

for imperative programs and to use it

to reason about such programs,

but the semantics often has operational nature

and sometimes must be extended

in comparison to the denotational semantics

for functional languages.[

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (3)

Haskell
Expressions (1E)

46 Young Won Lim
6/30/22

In contrast, the meaning of purely functional languages is

by default completely independent from their way of execution.

The Haskell98 standard even goes as far as to specify

only Haskell's non-strict denotational semantics,

leaving open how to implement them.

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (4)

Haskell
Expressions (1E)

47 Young Won Lim
6/30/22

The real quantity we're interested in formally describing is

expressions in programming languages.

A programming language semantics is described

by the operational semantics of the language.

The operational semantics can be thought of as

a description of an abstract machine

which operates over the abstract terms

of the programming language in the same way

that a virtual machine might operate over instructions.

http://dev.stephendiehl.com/fun/004_type_systems.html

Operational semantics (5)

Haskell
Expressions (1E)

48 Young Won Lim
6/30/22

Denotational semantics for a language provides a function

that translates from program syntax into mathematical objects

like sets, functions, lists or even some other programming language

– a denotational semantics acts like a compiler

Operational semantics works

by rewriting or executing programs step-by-step

– it uses only one program syntax to explain how a program runs

https://www.cs.princeton.edu/~dpw/cos441-11/notes/slides13-lambda-calc.pdf

Operational semantics (6)

Haskell
Expressions (1E)

49 Young Won Lim
6/30/22

As languages become more complicated, it is often easier to

define operational semantics than denotational semantics

– it requires less math to do so

– but you might not be able to prove particularly strong theorems

 using the semantics

https://www.cs.princeton.edu/~dpw/cos441-11/notes/slides13-lambda-calc.pdf

Operational semantics (7)

Haskell
Expressions (1E)

50 Young Won Lim
6/30/22

The operational library makes it easy to

implement monads with tricky control flow.

This is very useful for:

writing web applications in a sequential style,

programming games with a uniform interface

for human and AI players and easy replay,

implementing fast parser monads,

designing monadic DSLs, etc.

Embedded Domain Specific Language means

that you embed a Domain specific language in a language like Haskell.

https://apfelmus.nfshost.com/articles/operational-monad.html

Operational semantics (8)

Haskell
Expressions (1E)

51 Young Won Lim
6/30/22

For instance, to write a web application

where the user is guided through a sequence of tasks ("wizard").

To structure your application, you can use a custom monad

that supports an instruction askUserInput :: CustomMonad UserInput.

This command sends a web form to the user

and returns a result when he submits the form.

However, you don't want your server to block

while waiting for the user, so you have to suspend the computation

and resume it at some later point.

tricky to implement

This library makes it easy.

https://apfelmus.nfshost.com/articles/operational-monad.html

Operational semantics (9)

Haskell
Expressions (1E)

52 Young Won Lim
6/30/22

The idea is to identify a set of primitive instructions

and to specify their operational semantics.

Then, the library makes sure that the monad laws hold automatically.

In the web application example,

the primitive instruction would be AskUserInput.

Any monad can be implemented in this way.

Ditto for monad transformers.

https://apfelmus.nfshost.com/articles/operational-monad.html

Operational semantics (10)

Haskell
Expressions (1E)

53 Young Won Lim
6/30/22

Sharing means that temporary data is physically stored,

if it is used multiple times.

let x = sin 2

in x*x

x is used twice as factor in the product x*x.

Due to referential transparency, it does not play a role,

whether sin 2 is computed twice or

whether it is computed once and the result is stored and reused.

https://wiki.haskell.org/Lazy_evaluation

Sharing (1)

Haskell
Expressions (1E)

54 Young Won Lim
6/30/22

However, when you write let expression,

the Haskell compiler will certainly decide to store the result.

This can be the wrong way,

if a computation is cheap but its result is huge.

[0..1000000] ++ [0..1000000]

where it is much cheaper to compute the list of numbers

than to store it with full length.

https://wiki.haskell.org/Lazy_evaluation

Sharing (2)

Haskell
Expressions (1E)

55 Young Won Lim
6/30/22

Because the sharing property cannot be observed in Haskell,

it is hard to transfer the sharing property to foreign programs

when you use Haskell as an Embedded domain specific language.

You must design a monad or

use unsafePerformIO hacks, which should be avoided.

https://wiki.haskell.org/Lazy_evaluation

Sharing (3)

Haskell
Expressions (1E)

56 Young Won Lim
6/30/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

