
●

●

FPGA Variable Block Adder (1C)

 Copyright (c) 2021 - 2010 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

FPGA – Variable Block
Adder (1C)

3 Young Won Lim
1/25/22

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

y i=min {1+ iT ,1+(m+1−i)T }

y1, ... , ym

0≤x i≤ yi , i=1,... ,m

∑
i=1

m

x i=n

12345m=6

T T T T T T

i=4
1+iT

(m+1-i)T

FPGA – Variable Block
Adder (1C)

4 Young Won Lim
1/25/22

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

y i=min {1+ iT ,1+(m+1−i)T }

y1, ... , ym

12345m=6

T T T T T T

i=4
1+iT

(m+1-i)T

FPGA – Variable Block
Adder (1C)

5 Young Won Lim
1/25/22

Given m, an optimal division of the carry chain into groups
Can be obtained as follows
Let

Given , solve the minimization problem

Subject to

And

Any solution gives optimal group sizes
for a division of the carry chain

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

y i=min {1+ iT ,1+(m+1−i)T }

y1, ... , ym

min
x
max {x1, ... , xn}

0≤x i≤ yi , i=1,... ,m

∑
i=1

m

x i=n

x1, ... , xm

FPGA – Variable Block
Adder (1C)

6 Young Won Lim
1/25/22

The x’s can be computed iteratively as follows:

Initially take x
1
 = x

m
 = 0

At each iteration, increase as many of the x’s as possible
by one unit, without violating the constraints

An easy calculation shows that

Thus, at some iteration, we have and
The algorithm terminates

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

∑
i=1

m

y i = m +
1
2
mT +

1
4
m2T + (1−(−1)m) 1

8
T ≥ n

0≤x i≤ yi , i=1,... ,m ∑
i=1

m

x i ≤ n

∑
i=1

m

x i=n

FPGA – Variable Block
Adder (1C)

7 Young Won Lim
1/25/22

For n=32, we have m=7, (y1, y2, y3, y4, y5, y6, y7) = (3,5,7,9,7,5,3)
The above algorithm gives (x1, x2, x3, x4, x5, x6, x7) = (3,5,5,6,5,5,3)

A carry chain divided in this way has maximum delay D = mT =14
Since one unit of delay is 0.8ns, the maximum delay for 32-bit carry chain
is D = 14*0.8ns = 11.2ns
This time involves only the delay in the carry chain

It is easy to check that this is also the delay for a chain divided into groups of
sizes 1,3,5,7,7,5,3,1.
Thus this is also an optimal subdivision

The worst case delay includes the time needed to generate p
i
 and g

i
 signals

Delay of the carry chain, and the time for producing last sum bit s
n

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

FPGA – Variable Block
Adder (1C)

8 Young Won Lim
1/25/22

Implement it with a string of multiplexers

The multiplexer cell is designed as very fast

Multiplexers are designed
as very fast structures using buffered pass gates and
in this sense are similar to the Manchester carry chain
which has been shown to be
the most effective implementation of a carry chain

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

FPGA – Variable Block
Adder (1C)

9 Young Won Lim
1/25/22

The implementation of a single carry block is done
by mixing a 4 to 1 multiplexer (actually used as a 3 to 1)

In the last stage with a string of 2 to 1 multiplexers

a carry bypass is connected to inputs 3 and 4
of the 4:1 multiplexer (group carry multiplexer)
and the selection of the carry bypass is activated
by the NAND gate singaling when the condition
for group propagate is reached and
activating the group multiplexer in turn.

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

FPGA – Variable Block
Adder (1C)

10 Young Won Lim
1/25/22

The32-bit implementation of the VBA adder is obtained
By connecting the groups of the sizes calculated
For the full length of n=32 bits

To increase the speed further we used a faster inverting version
Of the multiplexer, alternating between Ci and Cb_i signals

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Delay model

Carry Chain Adder 11 Young Won Lim
1/25/22

Inverting FA inputs

X Y Cin Cout S
0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

X Y Cin Cout S
1 1 1 1 1
1 0 1 1 0
0 1 1 1 0
0 0 1 0 1
1 1 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 0 0 0

+
Co

A B

Ci

S

+

A B

CiCo’ = Co

S’ = S
S (A , B ,C i) = S (A , B ,C i)

Co(A , B ,C i) = Co(A ,B ,C i)

FPGA – Variable Block
Adder (1C)

12 Young Won Lim
1/25/22

Inversion Property

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

+
Co

A B

Ci

S

+
Co’

A B

Ci

S’

S (A , B ,C i) = S (A , B ,C i)

Co(A , B ,C i) = Co(A ,B ,C i)

Inverting all inputs to a FA
Results in inverted values for all outputs

http://www.ece.ucdavis.edu/acsel

FPGA – Variable Block
Adder (1C)

13 Young Won Lim
1/25/22

Inverted FA Outputs

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

Co
+

A B

Ci

S

Co
+

A B

Ci

S

Most CMOS transistor level FAs
(full adders) have inverted outputs
Co and S by default

Need inverter to get normal output

+

A B

CiCo

S

http://www.ece.ucdavis.edu/acsel

FPGA – Variable Block
Adder (1C)

14 Young Won Lim
1/25/22

Inverters on the critical path

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

+
Co

A B

Ci

S

+

A B

Ci

S

+
Co

A B

Ci

S

+

A B

S

eveneven oddodd

+
Co

A B

Ci

S

+

A B

Ci

S

+

A B

Ci

S

+

A B

Ci

S

4 inverters on the critical path

0 inverters on the critical path

http://www.ece.ucdavis.edu/acsel

FPGA – Variable Block
Adder (1C)

15 Young Won Lim
1/25/22

Minimize the critical paths

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

+
Co

A B

Ci

S

+

A B

Ci

S

+
Co

A B

Ci

S

+

A B

S

Minimizes the critical paths (the carry chain)
by eliminating inverters between the FAs
(will need to increase the transistor sizing)

http://www.ece.ucdavis.edu/acsel

FPGA – Variable Block
Adder (1C)

16 Young Won Lim
1/25/22

When carry chains are designed for an FPGA,
inverters can be added within the design
in various places in order to optimize the design.

While adding inverters to a typical logical circuit might
cause problems with the logical correctness of the design,
inverters can be added to the FPGA
without out causing this problem.

an FPGA can support the addition of inverters
because of LUTs.

an n-input LUT can produce any function of n variables.

if inverters are added to the structure of the FPGA,
one can just reprogram the LUT to produce
an inverted function of the input variables instead.

Carry Logic and the FPAG Cell Structure (1)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

FPGA – Variable Block
Adder (1C)

17 Young Won Lim
1/25/22

Unfortunately, the addition of extra inverters in a FPGA cell
could cause logical problems for the carry chains within that cell.

Figure shows a simple ripple carry chain
with the inverted inputs

Unfortunately, the carry chain will not just
produce an inverted output.

Instead, the inversion of the Cout0 signal of the left LUT
will cause the select line of Mux 1 to be inverted.
The inversion of Mux 1’s select line will cause Mux 1
to choose the wrong input, and therefore the output of Mux 1
will be incorrect.
Thus, the inverters in this example cause
the carry chain to function incorrectly,
instead of just inverting the outputs of the carry chain.

Carry Logic and the FPAG Cell Structure (2)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

FPGA – Variable Block
Adder (1C)

18 Young Won Lim
1/25/22

Carry Logic and the FPAG Cell Structure (2)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain

Carry Chain

FPGA – Variable Block
Adder (1C)

19 Young Won Lim
1/25/22

Carry Logic and the FPAG Cell Structure (2)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Case 1:
inverters before a simple carry chain

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Cout
i+1

Cout
i

Case 2:
inverters after a simple carry chain

Carry ChainCarry Chain

FPGA – Variable Block
Adder (1C)

20 Young Won Lim
1/25/22

However, it is possible to fix this problem
so that inverters can be added to the FPGA
and so that the carry chain will still function properly.

Assumption
there are chains of inverters
that are placed within an FPGA cell
either before of after the carry chain.

Because two inverters in series
produce a logical result equivalent to 0 inverters,
any chain of inverters can be reduced
to the logical equivalent of 0 inverters or 1 inverter.

Even number of inverters : 0 inverter
Odd number of inverters : 1 inverter

Carry Logic and the FPAG Cell Structure (3)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

 1 inverter

 0 inverter

FPGA – Variable Block
Adder (1C)

21 Young Won Lim
1/25/22

If there are the equivalent of 0 inverters in the FPGA cell,
then there is no problem.

Thus, there are only 2 cases to consider.

Case 1 is that there is the equivalent of 1 inverter
before the carry chain.

Case 2 is that there is the equivalent of 1 inverter
after the carry chain.

Note that the solutions to these two cases
can also be combined,
allowing inverters to appear
both before and after the carry chain.

Carry Logic and the FPAG Cell Structure (3)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

FPGA – Variable Block
Adder (1C)

22 Young Won Lim
1/25/22

First, Case 1 will be considered.

As was discussed above,
an inverted signal entering the carry chain
will cause the select lines of a mux
to choose the wrong input.

Therefore, inverted inputs can not be allowed
to enter the carry chain.

Case I – inverter before the carry chain (1)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Case 1:
inverters before a simple carry chain

Cout
i+1

Cout
i

Carry Chain

Wrong
Selection !!!

FPGA – Variable Block
Adder (1C)

23 Young Won Lim
1/25/22

As you will recall, the two 2-LUTs in Figure
produce signals labeled Cout1 and Cout0.

these outputs are generated
by the 2-LUTs based
on a user-programmable function of X and Y.

Case I – inverter before the carry chain (2)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain

FPGA – Variable Block
Adder (1C)

24 Young Won Lim
1/25/22

Therefore, the LUTs can just be
reprogrammed by the user
to produce Cout1 and Cout0
instead of Cout1 and Cout0, respectively.

Then when the logical inversion
takes place before the carry chain,
the inputs to the carry chain will still
be equivalent to Cout1 and Cout0.

Case I – inverter before the carry chain (3)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Case 1:
inverters before a simple carry chain

Cout
i+1

Cout
i

Cout1 Cout0 Cout1 Cout0

Carry Chain

FPGA – Variable Block
Adder (1C)

25 Young Won Lim
1/25/22

Now Case 2 will be considered.

In this case, 1 inverter is added
to the output of the carry chain.

One initial solution might be
to just reprogram the LUTs
to output Cout1 and Cout0
so that the inversions cancel out.

Unfortunately, this solution does not work,
because if the inputs to the carry chain are inverted
(as the result of changing the LUT outputs),
then the select inputs of the muxes
would again be inverted,
causing the muxes to choose the wrong inputs
and causing logical incorrectness.

Case II – inverter after the carry chain (1)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout
i+1

Cout
i

Cout1 Cout0 Cout1 Cout0

Carry Chain

Wrong
Selection !!!

FPGA – Variable Block
Adder (1C)

26 Young Won Lim
1/25/22

The solution to this problem however is
to just reprogram the LUTs in a different manner.

Instead of having the LUTs
output Cout1 and Cout0,
they are instead programmed
to output Cout0 and Cout1 , respectively.

Note that the outputs of the LUTs are
both inverted and exchanged.

The LUT that was previously outputting Cout1 is
now generating the inversion of Cout0,
and vice versa.

Case II – inverter after the carry chain (2)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout0 Cout1 Cout0 Cout1

Cout
i+1

Cout
i

Cout
i+1

Cout
i

Carry Chain

FPGA – Variable Block
Adder (1C)

27 Young Won Lim
1/25/22

Now, the carry chain works properly again.

Inverting the inputs to the carry chain
causes the select lines of the muxes
to choose the wrong inputs.

However, by switching the inputs also,
the muxes end up choosing the correct input
after all.

Therefore, all of the outputs of the carry chain
are now inverted.

However, since there is one logical inverter
after the carry chain, the final solution
is equivalent to the original solution.

Case II – inverter after the carry chain (3)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

FPGA – Variable Block
Adder (1C)

28 Young Won Lim
1/25/22

Case II – inverter after the carry chain (4)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Carry Chain

Cell i Cell i+1

Cout
i+1

Cout
i

Cout1 Cout0 Cout1 Cout0

Carry Chain

Wrong
Selection !!!1 0

FPGA – Variable Block
Adder (1C)

29 Young Won Lim
1/25/22

Case II – inverter after the carry chain (5)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Carry Chain

1 0

Cell i Cell i+1

Cout0 Cout1 Cout0 Cout1

Cout
i+1

Cout
i

Cout
i+1

Cout
i

Carry Chain

If Cout1 of Cell i is 1,
then Cout1 of Cell i+1 is selected

If Cout1 of Cell i is 0,
then Cout0 of Cell i+1 is selected

If Cout1 of Cell i is 0,
then Cout0 of Cell i+1 is selected

If Cout0 of Cell i is 1,
then Cout1 of Cell i+1 is selected

FPGA – Variable Block
Adder (1C)

30 Young Won Lim
1/25/22

The rules in Case 1 and Case 2
can then be applied together
to handle any structure of inverters.

For example, if there are inverters
both before and after the carry chains,
then first Case 1 is applied to the cells
to negate the inverters before the carry chain.
Thus, Cout1 and Cout0 are inverted.

Case I+II (1)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cout
i+1

Cout
i

Cell i Cell i+1

Cout1 Cout0 Cout1 Cout0

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Carry Chain

FPGA – Variable Block
Adder (1C)

31 Young Won Lim
1/25/22

Then Case 2 is applied to the cells
so that the outputs of the LUT,
Cout1 and Cout0 (as produced by Case 1),
are inverted and switched.
Thus, the final output of the LUTs
for the case of inverters
before and after the carry chain
is Cout0 and Cout1, respectively.

Therefore, any number of inversions
may be placed before or after the carry chain
without affecting its logical correctness.

Case I+II (2)

High Performance Carry Chains for FPGAs, M. M. Hosler, https:://people.ece.uw.edu

Cout
i+1

Cout
i

Cell i Cell i+1

Cout0 Cout1 Cout0 Cout1

Cout0 Cout1 Cout0 Cout1

Cout0 Cout1 Cout0

Carry Chain

Cout1

FPGA – Variable Block
Adder (1C)

32 Young Won Lim
1/25/22

carry select chain,
blocks of ripple carry element
precomputing the Cout value
for each possible Cin value
(true Cin or false Cin)

a variable block structure
blocks of ripple carry element
skip the carry signal over intermediate cells
where appropriate.

contiguous blocks are grouped together
to form a unit with a standard ripple carry chain

skip logic allows the value of the block's Cin,
to be bypassed to later blocks.

Variable Block

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

FPGA – Variable Block
Adder (1C)

33 Young Won Lim
1/25/22

Ripple Carry Structure

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

A Carry Select carry chain structure
for use in FPGAs

the carry computation
for the first two cells is performed
with the simple ripple-carry structure
implemented by mux1

Cell 1

M1

Cell 0

Cout
0

Cout
1

C1
0

C0
0

C1
1

C0
1

Cell 3

M1

Cell 2

Cout
2

Cout
3

C1
2

C0
2

C1
3

C0
3

M1

Cout=(Cin⋅C 1) + (Cin⋅C 0)

C1 = X+Y
C 0 = X⋅Y

X Y Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 1

Carry Chain Adder 34 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

 C1 C0 Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Cout=(Cin⋅C 1) + (Cin⋅C 0)

X Y C1 C0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

(Cin⋅C1) = Cin⋅(X Y +X Y +X Y) → propagate Cin

(Cin⋅C0) =Cin⋅X Y → generate a new carry

X Y Cin Cout
0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 1
1 1 1 1

C1 = X+Y
C 0 = X⋅Y

Cell 1

M

Cout

C1 C0

Cin

= (Cin⋅C1)
+ (Cin⋅C 0)

FPGA – Variable Block
Adder (1C)

35 Young Won Lim
1/25/22

Ripple Carry Structure

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

((Cin⋅C1) + (Cin⋅C0)) means

((Cin⋅C1) + (Cin⋅C0)) is false

when Cin is true

when Cin is true

C1 must be false

C0 must be false

because (Cin⋅C 1) must be false

because (Cin⋅C 0) must be false

therefore (C1Cin)

therefore (C0Cin)

Two mutually exclusive cases

[(Cin⋅C 1) = F] ∧ [(Cin⋅C0) = F]

Cout=(Cin⋅C 1) + (Cin⋅C 0)

=(Cin⋅C 1)⋅(Cin⋅C 0)

=(Cin + C1)⋅(Cin + C 0)

=CinCin + CinC0 + C1Cin + C1C 0

=CinC 0 + C 1Cin + C 1C 0

=CinC 0 + C 1Cin redundant

FPGA – Variable Block
Adder (1C)

36 Young Won Lim
1/25/22

Ripple Carry Structure

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cout=(Cin⋅C 1) + (Cin⋅C 0)

C1 = X+Y
C 0 = X⋅Y

X Y Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 Cin + Cin

X Y C1 C0 Cin·C1 Cin·C0 C1·C0
0 0 1 1 Cin Cin 1 1
0 1 0 1 0 Cin Cin 0
1 0 0 1 0 Cin Cin 0
1 1 0 0 0 0 0 0

Cout=(Cin⋅C 1) + (Cin⋅C 0)

=(Cin⋅C 1)⋅(Cin⋅C 0)

=(Cin + C1)⋅(Cin + C 0)

=CinCin + CinC0 + C1Cin + C1C 0

=CinC 0 + C 1Cin + C 1C 0

Cin·C1 + Cin·C0

redundant
=CinC 0 + C 1Cin

Inverse
Propagate

FPGA – Variable Block
Adder (1C)

37 Young Won Lim
1/25/22

Ripple Carry Structure

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

X Y C1 C0 Cin·C1 Cin·C0 C1·C0
0 0 1 1 Cin Cin 1 1
0 1 0 1 0 Cin Cin 0
1 0 0 1 0 Cin Cin 0
1 1 0 0 0 0 0 0

Inverse
Propagate

X Y C1 C0 Cin·C1 Cin·C0 C1·C0
0 0 0 0 0 0 0 0
0 1 1 0 Cin 0 Cin 0
1 0 1 0 Cin 0 Cin 0
1 1 1 1 Cin Cin 1 1

Cout =Cin⋅C 1 + Cin⋅C 0

Cout =Cin⋅C 0 + C1⋅Cin

Propagate

● the wire Cout has the value of Cout
● the wire C0 has the value of C0
● the wire C0 has the value of C0

● the wire Cout has the value of Cout
● the wire C1 has the value of C1
● the wire C0 has the value of C0

Carry Chain Adder 38 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

C0 C1

Cin

Cell 1

C1 C0

Cin
1 0 1 0

1 0 1 0

C1 C0

Cin
1 0

0 1

Cell 1 Cell 1

During optimization process, inverters
may be added before the node C1 and C0

● the wire C1 has the value of C1
● the wire C0 has the value of C0

EDA synthesis tools may insert
a pair of inverters to the chosen cell
for the optimization purpose (size, time).

we cannot know in advance which cell
has such inverters before the synthesis process

Carry Chain Adder 39 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

Cout

C0 C1

Cin

= (Cin⋅C 0)
+ (Cin⋅C1)

Cell 1

Cout

C1 C0

Cin

= (Cin⋅C1)
+ (Cin⋅C 0)

1 0 1 0

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

1 0 1 0

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

Cell 1

Cout

C1 C0

Cin

= (Cin⋅C 0)
+ (Cin⋅C1)

1 0

0 1

Cin if C1
Cin if C0

[If C1 then Cout is Cin] + (OR)
[If C0 else Cout is Cin]

Cin if C0
Cin if C1

[If C0 then Cout is Cin] + (OR)
[If C1 else Cout is Cin]

Carry Chain Adder 40 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

 C1 C0 Name Propagate
i

0 0 0 Kill 0
0 1 Cin Inverse Propagate 1
1 0 Cin Propagate 1
1 1 1 Generate 0

Cout = (Cin⋅C 0)
+ (Cin⋅C1)

Cout = (Cin⋅C1)
+ (Cin⋅C 0)

C1 = X+Y
C 0 = X⋅Y

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

If Cin then Cout is C1 (= X+Y)
else Cout is Co (= XY)

Cout = (Cin⋅C 0)
+ (Cin⋅C1)

Cell 1

C0 C1

Cin

Cell 1

C1 C0

Cin
1 0 1 0

1 0 1 0

Cell 1

C1 C0

Cin
1 0

0 1

Cout Cout Cout

Carry Chain Adder 41 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

Cout

C1 C0

Cin

= (Cin⋅C1)
+ (Cin⋅C 0)

1 0

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

1 0

Cell 1

C1 C0

Cin
1 0

1 X

Cell 1

C1 C0

Cin
1 0

X 1

propagate Cin
if the wire C1=1

propagate Cin
if the wire C0=1

C1 = X+Y
C 0 = X⋅Y

Cin X Y Cout C1 C0
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 1 1

Cout
Cin if C1 Cin if C0

Carry Chain Adder 42 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

C1 = X+Y
C 0 = X⋅Y

Cin X Y Cout C1 C0
1 0 0 1 1 1
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 0 0 0
0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 0 0 1
0 1 1 0 0 0

Cout = (Cin⋅C 0)
+ (Cin⋅C1)

Cell 1

C1 C0

Cin
1 0

X 0

Cell 1

C1 C0

Cin
1 0

0 X

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

propagate Cin
if the wire C0=0

propagate Cin
if the wire C1=0

Cell 1

C0

Cin
1 0

0 1
C1

Cout
Cin if C0 Cin if C1

Carry Chain Adder 43 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

C1 = X+Y
C 0 = X⋅Y

Cin X Y Cout C1 C0 C0 C1
1 0 0 1 1 1 1 1
1 0 1 1 0 1 1 0
1 1 0 1 0 1 1 0
1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0

Cell 1

Cout

C0 C1

Cin

= (Cin⋅C 0)
+ (Cin⋅C1)

1 0

1 0

Cell 1

C0 C1

Cin
1 0

0 X

Cell 1

C0 C1

Cin
1 0

X 0

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

Cin if C0 Cin if C1
Cout

Carry Chain Adder 44 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

Cout

C1 C0

1 0

Cell 1

C1 C0

Cin
1 0

0 1 0 1

Cout

Cin

 C1 C0 Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 1

(C1 ⊕ C 0)= 1 (C 1 ⊕ C 0)= 1

⊕1 =1 0

Carry Chain Adder 45 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

Cout

C1 C0

1 0

Cell 1

C1 C0

Cin
1 0

0 1 0 1

Cout

Cell 1

C1 C0

Cin
1 0

1 0

Cout

Cell 1

C1 C0

Cin
1 0

0 1

Cin

Cout

(C 1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

(C 1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

⊕1 =1 0

⊕1 =0 1

Carry Chain Adder 46 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

Cell 1

Cout

C1 C0

Cin
1 0

Cell 1

C1 C0

Cin
1 0

0 1 0 1

Cout

Cell 1

C1 C0

Cin
1 0

1 0

Cout

Cell 1

C1 C0

Cin
1 0

0 1

Cout

Cell 1

C1 C0

Cin
1 0

0 1

Cell 1

C1 C0

1 0

0 1

Cout Cout

(C1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

(C1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

(C1 ⊕ C 0)= 1

(C 1 ⊕ C 0)= 1

⊕1 =1 1⊕ 1

⊕1 =1 0⊕ 0

FPGA – Variable Block
Adder (1C)

47 Young Won Lim
1/25/22

Variable Block Carry Structure

Cell 1 Cell 0Cell 2

M1

M2

Cout
0

Cout
1

Cout
2

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

C1 = X+Y
C 0 = X⋅YPropagate

● M1 performs an initial two single stage ripple carry
● M2 ~ M5 form a 2-bit variable block
● M5 decides whether the Cin / Cin signal should be sent directly to Cout,
● M4 decides whether to invert the Cin signal or not

Cout

Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

original definition:
C1 = XY
C0 = X+Y

in the referenced paper

Invert

Cin/Cin

FPGA – Variable Block
Adder (1C)

48 Young Won Lim
1/25/22

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

 C1 C0 Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Cin/Cin

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain

Fast Carry Logic

FPGA – Variable Block
Adder (1C)

49 Young Won Lim
1/25/22

a major difficulty in developing a version of
the Variable Block carry chain for inclusion
in an FPGA's architecture is
the need to support both the propagate
and inverse propagate state the cells.

To do this, we compute two values.

check if all the cells are in
● normal propagate
● inverse propagate

by ANDing together the XOR of
each stage's C1 and C0 signal

If so, we know that the Cout function
● Cin
● Cin bar.

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

 C1 C0 Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Cin/Cin

FPGA – Variable Block
Adder (1C)

50 Young Won Lim
1/25/22

Invert is used only when
Propagate is true

Propagate is true
each cell in the carry chain
has either propagate condition (C1=1, C0=0)
or inverse propagate condition (C1=0, C0=1)

If the number of inverse propagate cells is odd
then Invert becomes true

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

C1 = X+Y
C 0 = X⋅Y

FPGA – Variable Block
Adder (1C)

51 Young Won Lim
1/25/22

to decide whether to invert the signal or not,
we must determine how many cells are
in inverse propagate mode.

if the number is even (including zero),
the output is not inverted,
while if the number is odd,
the output is inverted.

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Propagate bypass Cin/Cin

No propagate ripple carry

Cin/Cin

FPGA – Variable Block
Adder (1C)

52 Young Won Lim
1/25/22

the inversion check can be done
by looking for inverse signal C0 from each cell.

if this signal C0 is true,
the cell is in either generate or
inverse propagate mode,

if it is in generate mode
inversion signal will be ignored anyway

we only consider inverting the Cin signal
if all cells are in some form of propagate mode

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

FPGA – Variable Block
Adder (1C)

53 Young Won Lim
1/25/22

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

1 1 10

1 0 0 1 1 0 0 1

1 0

FPGA – Variable Block
Adder (1C)

54 Young Won Lim
1/25/22

The Cin still ripples through the block itself, since
the intermediate carry values must also be computed

If any of the cells in the carry chain
are not in propagate mode, (G or P’G’)
the Cout output is generated normally
by the ripple carry chain.

that is since there is some cell in the block
that is not in propagate mode,
it must be in generate or kill mode, (G or P’G’)
and thus the block's Cout output does not depend
on the block's Cin input

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Not in propagate mode (1)

P p
G G
P’G’ P’G’

P p
P G
P P’G’
G p
G G
G P’G’
P’G’ p
P’G’ G
P’G’ P’G’

FPGA – Variable Block
Adder (1C)

55 Young Won Lim
1/25/22

While this carry chain does start
at the block's Cin signal,
and leads to the block's Cout,
this long path is a false path

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Not in propagate mode (2)

P p
G G
P’G’ P’G’

P p
P G
P P’G’
G p
G G
G P’G’
P’G’ p
P’G’ G
P’G’ P’G’

FPGA – Variable Block
Adder (1C)

56 Young Won Lim
1/25/22

note that for both of these tests
we can use a tree of gates to compute the result.

Also, since we ignore the inversion signal
when we are not bypassing the carry chain
we can use C1 as the inverse of C0
for the inversion signal's computation,
which avoids the added inverter in the XOR gate

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

 C1 C0 Name
0 0 0 Kill
0 1 Cin Inverse Propagate
1 0 Cin Propagate
1 1 1 Generate

C1 = X+Y
C 0 = X⋅Y

X Y C1 C0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

Bypassing mode

C0 as the inverse of C1
When not bypassing

FPGA – Variable Block
Adder (1C)

57 Young Won Lim
1/25/22

Propagate

C1 = X+Y
C 0 = X⋅Y

C1 ⊕ C0 = X ⊕ Y

+ +
Cout

2Cout
3

P P = 1Cout
1

(C 13 ⊕C 03)⋅(C12 ⊕ C 02)Propagate

P

1 =

= 00 =

P

G

G

P G’
G G’

P’G’ G

= P
= 0

= 0

= P

P

FPGA – Variable Block
Adder (1C)

58 Young Won Lim
1/25/22

Invert

(C 13 ⊕ C 12)

PP

C1 = X+Y
C 0 = X⋅Y

C1 ⊕ C0 = X ⊕ YInvert

P

G

G

= P

GG

P’G’P
P’G’G

P’G’ P
P’G’ G

+ +
Cout

3 = 0P PG Cout
1

= 1

0 =

0 =
0

0

+ +
Cout

3
G PG = 0Cout

1`

= 1
1 =

1 =
0

0 + +
Cout

3
PG G Cout

1 = 0

+ +
Cout

3
PG P Cout

1 = 0

= 1

= 1

0 =

0 =

0 =

0 =

1

1

0

1

FPGA – Variable Block
Adder (1C)

59 Young Won Lim
1/25/22

Variable Block

+ +
Cout P G Cin = 0

= 1

1 =

1 =

1

1

+ +
Cout G P = 0Cin

+ +
Cout G G = 0Cin

= 1

= 1
1 =

1 =

1 =

1 =

1

1

0

1
+ +

Cout = 0PG PG Cin

= 1

0 =

0 =
0

0

FPGA – Variable Block
Adder (1C)

60 Young Won Lim
1/25/22

Variable Block

+ +
Cout = 0P PG Cin

+ +
Cout P G Cin = 0

+ +
Cout P P Cin = 0

= 1

= 1

= 1

0 =

1 =

0 =

0 =

1 =

1 =

1

1

0

0

0

1

Propagate

Invert

FPGA – Variable Block
Adder (1C)

61 Young Won Lim
1/25/22

Variable Block

+ +
Cout G P = 0Cin

+ +
Cout G G = 0Cin

+ +
Cout G PG = 0Cin

= 1

= 1

= 1
1 =

1 =

1 =

1 =

1 =

1 =

1

1

0

0

0

1

Invert

FPGA – Variable Block
Adder (1C)

62 Young Won Lim
1/25/22

Variable Block

+ +
Cout = 0PG PG Cin

+ +
Cout PG G Cin = 0

+ +
Cout PG P Cin = 0

= 1

= 1

= 1

0 =

0 =

0 =

0 =

0 =

0 =

1

1

0

0

0

1

Invert

Invert

FPGA – Variable Block
Adder (1C)

63 Young Won Lim
1/25/22

Variable Block

+ +
Cout P P Cin = 0

= 1

0 =

1 =

0

1

Propagate

+
P Cin = 0

= 1

0

1

0 1
1 0

+
P Cin = 0

= 1

0

1

1 1
0 0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

