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Oklobdzija:  High-Speed VLSI arithmetic units : adders and multipliers
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Given m, an optimal division of the carry chain into groups
Can be obtained as follows 
Let

Given                 , solve the minimization problem

Subject to 

And 

Any solution gives optimal group sizes 
for a division of the carry chain
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The x’s can be computed iteratively as follows: 

Initially take x
1
 = x

m
 = 0

At each iteration, increase as many of the x’s as possible
by one unit, without violating the constraints 

An easy calculation shows that 

Thus, at some iteration, we have and 
The algorithm terminates

Oklobdzija:  High-Speed VLSI arithmetic units : adders and multipliers
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For n=32, we have m=7, (y1, y2, y3, y4, y5, y6, y7) = (3,5,7,9,7,5,3)
The above algorithm gives (x1, x2, x3, x4, x5, x6, x7) = (3,5,5,6,5,5,3)

A carry chain divided in this way has maximum delay D = mT =14
Since one unit of delay is 0.8ns, the maximum delay for 32-bit carry chain
is D = 14*0.8ns = 11.2ns
This time involves only the delay in the carry chain

It is easy to check that this is also the delay for a chain divided into groups of 
sizes 1,3,5,7,7,5,3,1.
Thus this is also an optimal subdivision

The worst case delay includes the time needed to generate p
i
 and g

i
 signals

Delay of the carry chain, and the time for producing last sum bit s
n

Oklobdzija:  High-Speed VLSI arithmetic units : adders and multipliers
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Implement it with a string of multiplexers

The multiplexer cell is designed as very fast

Multiplexers are designed 
as very fast structures using buffered pass gates and 
in this sense are similar to the Manchester carry chain 
which has been shown to be 
the most effective implementation of a carry chain

Oklobdzija:  High-Speed VLSI arithmetic units : adders and multipliers

Delay model 
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The implementation of a single carry block is done 
by mixing a 4 to 1 multiplexer (actually used as a 3 to 1)

In the last stage with a string of 2 to 1 multiplexers

a carry bypass is connected to inputs 3 and 4 
of the 4:1 multiplexer (group carry multiplexer) 
and the selection of the carry bypass is activated 
by the NAND gate singaling when the condition 
for group propagate is reached and 
activating the group multiplexer in turn.

Oklobdzija:  High-Speed VLSI arithmetic units : adders and multipliers

Delay model 
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The32-bit implementation of the VBA adder is obtained 
By connecting the groups of the sizes calculated 
For the full length of n=32 bits

To increase the speed further we used a faster inverting version
Of the multiplexer, alternating between Ci and Cb_i signals

Oklobdzija:  High-Speed VLSI arithmetic units : adders and multipliers

Delay model 
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Inverting FA inputs

X Y  Cin        Cout S
0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 1 1 1 1

X Y  Cin        Cout S
1 1 1 1 1
1 0 1 1 0
0 1 1 1 0
0 0 1 0 1
1 1 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 0 0 0

+
Co

A B

Ci

S

+

A B

CiCo’ = Co

S’ = S
S (A , B ,C i) = S (A , B ,C i)

Co(A , B ,C i) = Co(A ,B ,C i)
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Inversion Property

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

+
Co

A B

Ci

S

+
Co’

A B

Ci

S’

S (A , B ,C i) = S (A , B ,C i)

Co(A , B ,C i) = Co(A ,B ,C i)

Inverting all inputs to a FA 
Results in inverted values for all outputs

http://www.ece.ucdavis.edu/acsel
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Inverted FA Outputs

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

Co
+

A B

Ci

S

Co
+

A B

Ci

S

Most CMOS transistor level FAs
(full adders) have inverted outputs 
Co and S by default 

Need inverter to get normal output

+

A B

CiCo

S

http://www.ece.ucdavis.edu/acsel
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Inverters on the critical path

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

+
Co

A B

Ci

S

+

A B

Ci

S

+
Co

A B

Ci

S

+

A B

S

eveneven oddodd

+
Co

A B

Ci

S

+

A B

Ci

S

+

A B

Ci

S

+

A B

Ci

S

4 inverters on the critical path

0 inverters on the critical path

http://www.ece.ucdavis.edu/acsel
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Minimize the critical paths

http://www.ece.ucdavis.edu/acsel, Oklobdzija originally from Rabaey

+
Co

A B

Ci

S

+

A B

Ci

S

+
Co

A B

Ci

S

+

A B

S

Minimizes the critical paths (the carry chain) 
by eliminating inverters between the FAs 
(will need to increase the transistor sizing)

http://www.ece.ucdavis.edu/acsel
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When carry chains are designed for an FPGA, 
inverters can be added within the design 
in various places in order to optimize the design. 

While adding inverters to a typical logical circuit might
cause problems with the logical correctness of the design, 
inverters can be added to the FPGA
without out causing this problem. 

an FPGA can support the addition of inverters
because of  LUTs. 

an n-input LUT can produce any function of n variables. 

if inverters are added to the structure of the FPGA, 
one can just reprogram the LUT to produce 
an inverted function of the input variables instead. 

Carry Logic and the FPAG Cell Structure (1)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu
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Unfortunately, the addition of extra inverters in a FPGA cell 
could cause logical problems for the carry chains within that cell. 

Figure  shows a simple ripple carry chain 
with the inverted inputs  

Unfortunately, the carry chain will not just 
produce an inverted output. 

Instead, the inversion of the Cout0 signal of the left LUT 
will cause the select line of Mux 1 to be inverted. 
The inversion of Mux 1’s select line will cause Mux 1 
to choose the wrong input,  and therefore the output of Mux 1 
will be incorrect. 
Thus, the inverters in this example cause 
the carry chain to function incorrectly, 
instead of just inverting the outputs of the carry chain.

Carry Logic and the FPAG Cell Structure (2)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu
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Carry Logic and the FPAG Cell Structure (2)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

Cout i=(Cout i−1⋅C 1i) + (Cout i−1⋅C 0i)

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain

Carry Chain
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Carry Logic and the FPAG Cell Structure (2)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Case 1:
inverters before a simple carry chain

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Cout
i+1

Cout
i

Case 2:
inverters after a simple carry chain

Carry ChainCarry Chain
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However, it is possible to fix this problem 
so that inverters can be added to the FPGA 
and so that the carry chain will still function properly. 

Assumption
there are chains of inverters 
that are placed within an FPGA cell 
either before of after the carry chain. 

Because two inverters in series 
produce a logical result equivalent to 0 inverters, 
any chain of inverters can be reduced 
to the logical equivalent of 0 inverters or 1 inverter. 

Even number of inverters : 0 inverter
Odd number of inverters : 1 inverter

Carry Logic and the FPAG Cell Structure (3)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

 1 inverter

 0 inverter
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If there are the equivalent of 0 inverters in the FPGA cell, 
then there is no problem.

Thus, there are only 2 cases to consider. 

Case 1 is that there is the equivalent of 1 inverter 
before the carry chain. 

Case 2 is that there is the equivalent of 1 inverter 
after the carry chain. 

Note that the solutions to these two cases
can also be combined, 
allowing inverters to appear 
both before and after the carry chain.

Carry Logic and the FPAG Cell Structure (3)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu
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First, Case 1 will be considered. 

As was discussed above, 
an inverted signal entering the carry chain 
will cause the select lines of a mux 
to choose the wrong input. 

Therefore, inverted inputs can not be allowed 
to enter the carry chain. 

Case I – inverter before the carry chain (1)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Case 1:
inverters before a simple carry chain

Cout
i+1

Cout
i

Carry Chain

Wrong
Selection !!!
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As you will recall, the two 2-LUTs in Figure 
produce signals labeled Cout1 and Cout0. 

these outputs are generated 
by the 2-LUTs based 
on a user-programmable function of X and Y.

Case I – inverter before the carry chain (2)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain
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Therefore, the LUTs can just be 
reprogrammed by the user 
to produce Cout1 and Cout0 
instead of Cout1 and Cout0, respectively. 

Then when the logical inversion 
takes place before the carry chain, 
the inputs to the carry chain will still 
be equivalent to Cout1 and Cout0.

Case I – inverter before the carry chain (3)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Case 1:
inverters before a simple carry chain

Cout
i+1

Cout
i

Cout1 Cout0 Cout1 Cout0

Carry Chain
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Now Case 2 will be considered. 

In this case, 1 inverter is added 
to the output of the carry chain.

One initial solution might be 
to just reprogram the LUTs 
to output Cout1 and Cout0 
so that the inversions cancel out. 

Unfortunately, this solution does not work, 
because if the inputs to the carry chain are inverted 
(as the result of changing the LUT outputs), 
then the select inputs of the muxes 
would again be inverted, 
causing the muxes to choose the wrong inputs 
and causing logical incorrectness. 

Case II – inverter after the carry chain (1)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout
i+1

Cout
i

Cout1 Cout0 Cout1 Cout0

Carry Chain

Wrong
Selection !!!
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The solution to this problem however is 
to just reprogram the LUTs in a different manner. 

Instead of having the LUTs 
output Cout1 and Cout0, 
they are instead programmed 
to output Cout0 and Cout1 , respectively.

Note that the outputs of the LUTs are 
both inverted and exchanged. 

The LUT that was previously outputting Cout1 is 
now generating the inversion of Cout0, 
and vice versa. 

Case II – inverter after the carry chain (2)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout0 Cout1 Cout0 Cout1

Cout
i+1

Cout
i

Cout
i+1

Cout
i

Carry Chain
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Now, the carry chain works properly again. 

Inverting the inputs to the carry chain 
causes the select lines of the muxes 
to choose the wrong inputs. 

However, by switching the inputs also, 
the muxes end up choosing the correct input 
after all. 

Therefore, all of the outputs of the carry chain 
are now inverted. 

However, since there is one logical inverter 
after the carry chain, the final solution 
is equivalent to the original solution.

Case II – inverter after the carry chain (3)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu



FPGA – Variable Block 
Adder (1C)

28 Young Won Lim
1/25/22

Case II – inverter after the carry chain (4)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Carry Chain

Cell i Cell i+1 

Cout
i+1

Cout
i

Cout1 Cout0 Cout1 Cout0

Carry Chain

Wrong
Selection !!!1 0
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Case II – inverter after the carry chain (5)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Carry Chain

1 0

Cell i Cell i+1 

Cout0 Cout1 Cout0 Cout1

Cout
i+1

Cout
i

Cout
i+1

Cout
i

Carry Chain

If Cout1 of Cell i is 1, 
then Cout1 of Cell i+1 is selected 

If Cout1 of Cell i is 0, 
then Cout0 of Cell i+1 is selected 

If Cout1 of Cell i is 0, 
then Cout0 of Cell i+1 is selected 

If Cout0 of Cell i is 1, 
then Cout1 of Cell i+1 is selected 
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The rules in Case 1 and Case 2 
can then be applied together 
to handle any structure of inverters.  

For example, if there are inverters 
both before and after the carry chains, 
then first Case 1 is applied to the cells 
to negate the inverters before the carry chain. 
Thus, Cout1 and Cout0 are inverted. 

Case I+II (1)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cout
i+1

Cout
i

Cell i Cell i+1 

Cout1 Cout0 Cout1 Cout0

Cout1 Cout0 Cout1 Cout0

Cout
i+1

Cout
i

Carry Chain
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Then Case 2 is applied to the cells 
so that the outputs of the LUT, 
Cout1 and Cout0 (as produced by Case 1), 
are inverted and switched. 
Thus, the final output of the LUTs 
for the case of inverters 
before and after the carry chain 
is Cout0 and Cout1, respectively. 

Therefore, any number of inversions 
may be placed before or after the carry chain 
without affecting its logical correctness.

Case I+II (2)

High Performance Carry Chains for FPGAs,  M. M. Hosler, https:://people.ece.uw.edu

Cout
i+1

Cout
i

Cell i Cell i+1 

Cout0 Cout1 Cout0 Cout1

Cout0 Cout1 Cout0 Cout1

Cout0 Cout1 Cout0

Carry Chain

Cout1
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carry select chain, 
blocks of ripple carry element
precomputing the Cout value 
for each possible Cin value 
(true Cin or false Cin)

a variable block structure 
blocks of ripple carry element
skip the carry signal over intermediate cells
where appropriate.

contiguous blocks are grouped together 
to form a unit with a standard ripple carry chain

skip logic allows the value of the block's Cin, 
to be bypassed to later blocks.

Variable Block

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 
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Ripple Carry Structure 

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

A Carry Select carry chain structure 
for use in FPGAs

the carry computation 
for the first two cells is performed
with the simple ripple-carry structure 
implemented by mux1

Cell 1

M1

Cell 0

Cout
0

Cout
1

C1
0

C0
0

C1
1

C0
1

Cell 3

M1

Cell 2

Cout
2

Cout
3

C1
2

C0
2

C1
3

C0
3

M1

Cout=(Cin⋅C 1) + (Cin⋅C 0)

C1 = X+Y
C 0 = X⋅Y

X Y Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 1



Carry Chain Adder 34 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

   C1      C0                 Name
0 0 0 Kill
0 1 Cin Inverse Propagate 
1 0 Cin Propagate
1 1 1 Generate

Cout=(Cin⋅C 1) + (Cin⋅C 0)

X Y     C1        C0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

(Cin⋅C1) = Cin⋅(X Y +X Y +X Y ) → propagate Cin

(Cin⋅C0) =Cin⋅X Y → generate a new carry

X Y  Cin        Cout
0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 1
1 0 1 1
1 1 1 1

C1 = X+Y
C 0 = X⋅Y

Cell 1

M

Cout

C1 C0

Cin

= (Cin⋅C1)
+ (Cin⋅C 0)
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Ripple Carry Structure 

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

((Cin⋅C1) + (Cin⋅C0)) means

((Cin⋅C1) + (Cin⋅C0)) is false

when Cin is true 

when Cin is true 

C1 must be false 

C0 must be false 

because (Cin⋅C 1) must be false

because (Cin⋅C 0) must be false

therefore (C1Cin) 

therefore (C0Cin) 

Two mutually exclusive cases

[(Cin⋅C 1) = F ] ∧ [(Cin⋅C0) = F ]

Cout=(Cin⋅C 1) + (Cin⋅C 0)

=(Cin⋅C 1)⋅(Cin⋅C 0)

=(Cin + C1)⋅(Cin + C 0)

=CinCin + CinC0 + C1Cin + C1C 0

=CinC 0 + C 1Cin + C 1C 0

=CinC 0 + C 1Cin redundant
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Ripple Carry Structure 

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

Cout=(Cin⋅C 1) + (Cin⋅C 0)

C1 = X+Y
C 0 = X⋅Y

X Y Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 Cin + Cin

X Y C1 C0 Cin·C1 Cin·C0 C1·C0
0 0 1 1 Cin Cin 1 1
0 1 0 1 0 Cin Cin 0
1 0 0 1 0 Cin Cin 0
1 1 0 0 0 0          0 0

Cout=(Cin⋅C 1) + (Cin⋅C 0)

=(Cin⋅C 1)⋅(Cin⋅C 0)

=(Cin + C1)⋅(Cin + C 0)

=CinCin + CinC0 + C1Cin + C1C 0

=CinC 0 + C 1Cin + C 1C 0

Cin·C1 + Cin·C0

redundant
=CinC 0 + C 1Cin

Inverse 
Propagate
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Ripple Carry Structure 

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

X Y C1 C0 Cin·C1 Cin·C0 C1·C0
0 0 1 1 Cin Cin 1 1
0 1 0 1 0 Cin Cin 0
1 0 0 1 0 Cin Cin 0
1 1 0 0 0 0          0 0

Inverse 
Propagate

X Y C1 C0 Cin·C1 Cin·C0 C1·C0
0 0 0 0 0 0 0 0
0 1 1 0 Cin 0 Cin 0
1 0 1 0 Cin 0 Cin 0
1 1 1 1 Cin Cin          1 1

Cout =Cin⋅C 1 + Cin⋅C 0

Cout =Cin⋅C 0 + C1⋅Cin

 
Propagate

● the wire Cout has the value of Cout
● the wire C0 has the value of C0
● the wire C0 has the value of C0

● the wire Cout has the value of Cout
● the wire C1 has the value of C1
● the wire C0 has the value of C0
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

C0 C1

Cin

Cell 1

C1 C0

Cin
1        0 1        0

1 0 1 0

C1 C0

Cin
1        0

0 1

Cell 1 Cell 1

During optimization process, inverters
may be added before the node C1 and C0

● the wire C1 has the value of C1
● the wire C0 has the value of C0

EDA synthesis tools may insert 
a pair of inverters to the chosen cell 
for the optimization purpose (size, time).

we cannot know in advance which cell 
has such inverters before the synthesis process
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

Cell 1

Cout

C0 C1

Cin

= (Cin⋅C 0)
+ (Cin⋅C1)

Cell 1

Cout

C1 C0

Cin

= (Cin⋅C1)
+ (Cin⋅C 0)

1        0 1        0

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

1 0 1 0

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

Cell 1

Cout

C1 C0

Cin

= (Cin⋅C 0)
+ (Cin⋅C1)

1        0

0 1

Cin if C1
Cin if C0

[ If C1 then Cout is Cin ] + (OR)
[ If C0 else Cout is Cin  ]

Cin if C0
Cin if C1

[ If C0 then Cout is Cin  ] + (OR)
[ If C1 else Cout is Cin  ]
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

   C1      C0                 Name Propagate
i
 

0 0 0 Kill 0
0 1 Cin Inverse Propagate 1
1 0 Cin Propagate 1
1 1 1 Generate 0

Cout = (Cin⋅C 0)
+ (Cin⋅C1)

Cout = (Cin⋅C1)
+ (Cin⋅C 0)

C1 = X+Y
C 0 = X⋅Y

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

If Cin then Cout is C1 (= X+Y)
else Cout is Co (= XY)

Cout = (Cin⋅C 0)
+ (Cin⋅C1)

Cell 1

C0 C1

Cin

Cell 1

C1 C0

Cin
1        0 1        0

1 0 1 0

Cell 1

C1 C0

Cin
1        0

0 1

Cout Cout Cout



Carry Chain Adder 41 Young Won Lim
1/25/22

Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

Cell 1

Cout

C1 C0

Cin

= (Cin⋅C1)
+ (Cin⋅C 0)

1        0

If Cin then Cout is C1 (= X+Y)
else Cout is C0 (= XY)

1 0

Cell 1

C1 C0

Cin
1        0

1 X

Cell 1

C1 C0

Cin
1        0

X 1

propagate Cin 
if the wire C1=1

propagate Cin 
if the wire C0=1

C1 = X+Y
C 0 = X⋅Y

Cin X Y Cout C1 C0
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 1 1

Cout
Cin if C1 Cin if C0
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

C1 = X+Y
C 0 = X⋅Y

Cin X Y Cout C1 C0
1 0 0 1 1 1
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 0 0 0
0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 0 0 1
0 1 1 0 0 0

Cout = (Cin⋅C 0)
+ (Cin⋅C1)

Cell 1

C1 C0

Cin
1        0

X 0

Cell 1

C1 C0

Cin
1        0

0 X

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

propagate Cin 
if the wire C0=0

propagate Cin 
if the wire C1=0

Cell 1

C0

Cin
1        0

0 1
C1

Cout
Cin if C0 Cin if C1
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

C1 = X+Y
C 0 = X⋅Y

Cin X Y Cout C1 C0 C0 C1
1 0 0 1 1 1 1 1
1 0 1 1 0 1 1 0
1 1 0 1 0 1 1 0
1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0
0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0

Cell 1

Cout

C0 C1

Cin

= (Cin⋅C 0)
+ (Cin⋅C1)

1        0

1 0

Cell 1

C0 C1

Cin
1        0

0 X

Cell 1

C0 C1

Cin
1        0

X 0

If Cin then Cout is C0 (= XY)
else Cout is C1 (= X+Y)

Cin if C0 Cin if C1
Cout
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

Cell 1

Cout

C1 C0

1        0

Cell 1

C1 C0

Cin
1        0

0 1 0 1

Cout

Cin

   C1      C0      Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 1

(C1 ⊕ C 0)= 1 (C 1 ⊕ C 0)= 1

⊕1 =1 0
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

Cell 1

Cout

C1 C0

1        0

Cell 1

C1 C0

Cin
1        0

0 1 0 1

Cout

Cell 1

C1 C0

Cin
1        0

1 0

Cout

Cell 1

C1 C0

Cin
1        0

0 1

Cin

Cout

(C 1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

(C 1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

⊕1 =1 0

⊕1 =0 1
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Cout using C1, C0, Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

Cell 1

Cout

C1 C0

Cin
1        0

Cell 1

C1 C0

Cin
1        0

0 1 0 1

Cout

Cell 1

C1 C0

Cin
1        0

1 0

Cout

Cell 1

C1 C0

Cin
1        0

0 1

Cout

Cell 1

C1 C0

Cin
1        0

0 1

Cell 1

C1 C0

1        0

0 1

Cout Cout

(C1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

(C1 ⊕ C 0)= 1 (C1 ⊕ C 0)= 1

(C1 ⊕ C 0)= 1

(C 1 ⊕ C 0)= 1

⊕1 =1 1⊕ 1

⊕1 =1 0⊕ 0
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Variable Block Carry Structure

Cell 1 Cell 0Cell 2

M1

M2

Cout
0

Cout
1

Cout
2

C1
0

C0
0

C1
1

C0
1

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

C1 = X+Y
C 0 = X⋅YPropagate

● M1 performs an initial two single stage ripple carry
● M2 ~ M5 form a 2-bit variable block
● M5 decides whether the Cin / Cin signal should be sent directly to Cout, 
● M4 decides whether to invert the Cin signal or not 

Cout

Cin

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry 

original definition:
C1 = XY
C0 = X+Y

in the referenced paper

Invert

Cin/Cin 
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https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

   C1      C0                 Name
0 0 0 Kill
0 1 Cin Inverse Propagate 
1 0 Cin Propagate
1 1 1 Generate

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Cin/Cin 

X Y

F

Cout

Fast Carry Logic

Z

C1 C0

P

OR AND

PP

Cout1 Cout0

2 3

5

1

Carry Chain

Fast Carry Logic
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a major difficulty in developing a version of 
the Variable Block carry chain for inclusion 
in an FPGA's architecture is 
the need to support both the propagate 
and inverse propagate state the cells.

To do this, we compute two values.

check if all the cells are in
● normal  propagate 
● inverse propagate 

by ANDing together the XOR of 
each stage's C1 and C0 signal

If so, we know that the Cout function 
● Cin 
● Cin bar. 

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

   C1      C0                 Name
0 0 0 Kill
0 1 Cin Inverse Propagate 
1 0 Cin Propagate
1 1 1 Generate

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Cin/Cin 
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Invert is used only when
Propagate is true

Propagate is true
each cell in the carry chain
has either propagate condition (C1=1, C0=0)
or inverse propagate condition (C1=0, C0=1)

If the number of inverse propagate cells is odd
then Invert becomes true

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

C1 = X+Y
C 0 = X⋅Y
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to decide whether to invert the signal or not, 
we must determine how many cells are 
in inverse propagate mode.

if the number is even (including zero), 
the output is not inverted,
while if the number is odd, 
the output is inverted.

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Propagate bypass Cin/Cin 

No propagate ripple carry 

Cin/Cin 
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the inversion check can  be done 
by looking for inverse signal C0 from each cell.

if this signal C0 is true, 
the cell is in either generate or 
inverse propagate mode, 

if it is in generate mode 
inversion signal will be ignored anyway 

we only consider inverting the Cin signal
if all cells are in some form of propagate mode

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin
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https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

Cell 2

M2

Cout
2

C1
2

C0
2

Cell 3

M3

Cout
3

C1
3

C0
3

M4

M5

Propagate

Cout

Invert

Cin

1 1 10

1 0 0 1 1 0 0 1

1 0
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The Cin still ripples through the block itself, since 
the intermediate carry values must also be computed

If any of the cells in the carry chain 
are not in propagate mode, (G or P’G’)
the Cout output is generated normally 
by the ripple carry chain.

that is since there is some cell in the block 
that is not in propagate mode, 
it must be in generate or kill mode, (G or P’G’)
and thus the block's Cout output does not depend 
on the block's Cin input

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Not in propagate mode (1)

P p
G G
P’G’ P’G’

P p
P G
P P’G’
G p
G G
G P’G’
P’G’ p
P’G’ G
P’G’ P’G’



FPGA – Variable Block 
Adder (1C)

55 Young Won Lim
1/25/22

While this carry chain does start 
at the block's  Cin signal, 
and leads to the block's Cout, 
this long path is a false path

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Not in propagate mode (2)

P p
G G
P’G’ P’G’

P p
P G
P P’G’
G p
G G
G P’G’
P’G’ p
P’G’ G
P’G’ P’G’
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note that for both of these tests 
we can use a tree of gates to compute the result.

Also, since we ignore the inversion signal 
when we are not bypassing the carry chain 
we can use C1 as the inverse of C0 
for the inversion signal's  computation, 
which avoids the added inverter in the XOR gate

https://en.wikipedia.org/wiki/Carry-lookahead_adder

Variable Block

   C1      C0                 Name
0 0 0 Kill
0 1 Cin Inverse Propagate 
1 0 Cin Propagate
1 1 1 Generate

C1 = X+Y
C 0 = X⋅Y

X Y     C1        C0
0 0 0 0 X Y
0 1 1 0 X Y
1 0 1 0 X Y
1 1 1 1 X Y

Bypassing mode

C0 as the inverse of C1
When not bypassing
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Propagate

C1 = X+Y
C 0 = X⋅Y

C1 ⊕ C0 = X ⊕ Y

+ +
Cout

2Cout
3

P P = 1Cout
1

(C 13 ⊕C 03)⋅(C12 ⊕ C 02)Propagate

P

1 = 

= 00 = 

P

G

G

P G’
G G’

P’G’ G

= P
= 0

= 0

= P

P
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Invert

(C 13 ⊕ C 12)

PP

C1 = X+Y
C 0 = X⋅Y

C1 ⊕ C0 = X ⊕ YInvert

P

G

G

= P

GG

P’G’P
P’G’G

P’G’ P
P’G’ G

+ +
Cout

3 = 0P PG Cout
1

= 1

0 =

0 =
0

0

+ +
Cout

3
G PG = 0Cout

1`

= 1
1 =

1 =
0

0 + +
Cout

3
PG G Cout

1 = 0

+ +
Cout

3
PG P Cout

1 = 0

= 1

= 1

0 =

0 =

0 =

0 =

1

1

0

1
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Variable Block

+ +
Cout P G Cin = 0

= 1

1 =

1 =

1

1

+ +
Cout G P = 0Cin

+ +
Cout G G = 0Cin

= 1

= 1
1 =

1 =

1 =

1 =

1

1

0

1
+ +

Cout = 0PG PG Cin

= 1

0 =

0 =
0

0
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Variable Block

+ +
Cout = 0P PG Cin

+ +
Cout P G Cin = 0

+ +
Cout P P Cin = 0

= 1

= 1

= 1

0 =

1 =

0 =

0 =

1 =

1 =

1

1

0

0

0

1

Propagate

Invert
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Variable Block

+ +
Cout G P = 0Cin

+ +
Cout G G = 0Cin

+ +
Cout G PG = 0Cin

= 1

= 1

= 1
1 =

1 =

1 =

1 =

1 =

1 =

1

1

0

0

0

1

Invert
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Variable Block

+ +
Cout = 0PG PG Cin

+ +
Cout PG G Cin = 0

+ +
Cout PG P Cin = 0

= 1

= 1

= 1

0 =

0 =

0 =

0 =

0 =

0 =

1

1

0

0

0

1

Invert

Invert



FPGA – Variable Block 
Adder (1C)

63 Young Won Lim
1/25/22

Variable Block

+ +
Cout P P Cin = 0

= 1

0 =

1 =

0

1

Propagate

+
P Cin = 0

= 1

0

1

0 1
1 0

+
P Cin = 0

= 1

0

1

1 1
0 0
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