In per-decison importance sampling given in Sutton & Barto's book:
Eq 5.12 $\rho_{t:T-1}R_{t+k} = \frac{\pi(A_{t}|S_{t})}{b(A_{t}|S_{t})}\frac{\pi(A_{t+1}|S_{t+1})}{b(A_{t+1}|S_{t+1})}\frac{\pi(A_{t+2}|S_{t+2})}{b(A_{t+2}|S_{t+2})}......\frac{\pi(A_{T-1}|S_{T-1})}{b(A_{T-1}|S_{T-1})}R_{t+k}$
Eq 5.13 $\mathbb{E}\left[\frac{\pi(A_{k}|S_{k})}{b(A_{k}|S_{k})}\right] = \displaystyle\sum_ab(a|S_k)\frac{\pi(A_{k}|S_{k})}{b(A_{k}|S_{k})} = \displaystyle\sum_a\pi(a|S_k) = 1$
Eq.5.14 $\mathbb{E}[\rho_{t:T-1}R_{t+k}] = \mathbb{E}[\rho_{t:t+k-1}R_{t+k}]$
As full derivation is not given, how do we arrive at Eq 5.14 from 5.12?
From what i understand :
1) $R_{t+k}$ is only dependent on action taken at $t+k-1$ given state at that time i.e. only dependent on $\frac{\pi(A_{t+k-1}|S_{t+k-1})}{b(A_{t+k-1}|S_{t+k-1})}$
2) $\frac{\pi(A_{k}|S_{k})}{b(A_{k}|S_{k})}$ is independent of $\frac{\pi(A_{k+1}|S_{k+1})}{b(A_{k+1}|S_{k+1})}$ , so $\mathbb{E}\left[\frac{\pi(A_{k}|S_{k})}{b(A_{k}|S_{k})}\frac{\pi(A_{k+1}|S_{k+1})}{b(A_{k+1}|S_{k+1})}\right] = \mathbb{E}\left[\frac{\pi(A_{k}|S_{k})}{b(A_{k}|S_{k})}\right]\mathbb{E}\left[\frac{\pi(A_{k+1}|S_{k+1})}{b(A_{k+1}|S_{k+1})}\right], \forall \, k\in [t,T-2]$
Hence, $\mathbb{E}[\rho_{t:T-1}R_{t+k}]= \mathbb{E}\left[\frac{\pi(A_{t}|S_{t})}{b(A_{t}|S_{t})}\frac{\pi(A_{t+1}|S_{t+1})}{b(A_{t+1}|S_{t+1})}\frac{\pi(A_{t+2}|S_{t+2})}{b(A_{t+2}|S_{t+2})}......\frac{\pi(A_{T-1}|S_{T-1})}{b(A_{T-1}|S_{T-1})}R_{t+k}\right] \\= \mathbb{E}\left[\frac{\pi(A_{t}|S_{t})}{b(A_{t}|S_{t})}\frac{\pi(A_{t+1}|S_{t+1})}{b(A_{t+1}|S_{t+1})}\frac{\pi(A_{t+2}|S_{t+2})}{b(A_{t+2}|S_{t+2})}....\frac{\pi(A_{t+k-2}|S_{t+k-2})}{b(A_{t+k-2}|S_{t+k-2})}\frac{\pi(A_{t+k}|S_{t+k})}{b(A_{t+k}|S_{t+k})}......\frac{\pi(A_{T-1}|S_{T-1})}{b(A_{T-1}|S_{T-1})}\right]\mathbb{E}\left[\frac{\pi(A_{t+k-1}|S_{t+k-1})}{b(A_{t+k-1}|S_{t+k-1})}R_{t+k}\right] \\= \mathbb{E}\left[\frac{\pi(A_{t}|S_{t})}{b(A_{t}|S_{t})}\right]\mathbb{E}\left[\frac{\pi(A_{t+1}|S_{t+1})}{b(A_{t+1}|S_{t+1})}\right]\mathbb{E}\left[\frac{\pi(A_{t+2}|S_{t+2})}{b(A_{t+2}|S_{t+2})}\right]....\mathbb{E}\left[\frac{\pi(A_{t+k-2}|S_{t+k-2})}{b(A_{t+k-2}|S_{t+k-2})}\right]\mathbb{E}\left[\frac{\pi(A_{t+k}|S_{t+k})}{b(A_{t+k}|S_{t+k})}\right]......\mathbb{E}\left[\frac{\pi(A_{T-1}|S_{T-1})}{b(A_{T-1}|S_{T-1})}\right]\mathbb{E}\left[\frac{\pi(A_{t+k-1}|S_{t+k-1})}{b(A_{t+k-1}|S_{t+k-1})}R_{t+k}\right] \\= \mathbb{E}[\frac{\pi_{t+k-1}}{b_{t+k-1}}R_{t+k}]\\=\mathbb{E}[\rho_{t+k-1}R_{t+k}]$