For questions related to deep Boltzmann machine (DBM) which is a type of binary pairwise Markov random field (undirected probabilistic graphical model) with multiple layers of hidden random variables.
A deep Boltzmann machine (DBM) is a type of binary pairwise Markov random field (undirected probabilistic graphical model) with multiple layers of hidden random variables. It is a network of symmetrically coupled stochastic binary units. It comprises a set of visible units and layers of hidden units.
Like DBNs, DBMs can learn complex and abstract internal representations of the input in tasks such as object or speech recognition, using limited, labeled data to fine-tune the representations built using a large set of unlabeled sensory input data.